

Healthy Aging: Dying Young As Late As Possible

Johnny Huard, PhD

Chief Scientific Officer

Director, Linda & Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute

Director of Research, ProofPoint Biologics, The Steadman Clinic

Affiliate Faculty, Department of Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Colorado State University

Professor,
Duquesne University College of Osteopathic Medicine

Professor of Orthopaedic Surgery,
University of Pittsburgh School of Medicine

Professor of Orthopaedic Surgery,
Miller School of Medicine, University of Miami

Talk Outline

Who We Are & What We Do at The Steadman Clinic & Steadman Philippon Research Institute

Optimizing Patients for Surgery in 2025

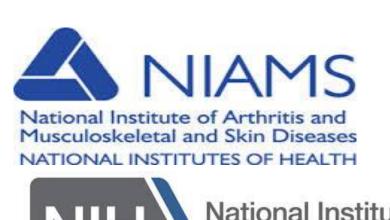
Healthy Aging Program: Dying Young as Late as Possible

Skeletal Muscle Health and the Implication of Ozempic-like Drugs for Aging-Related Disease and Conditions

Industry and

Collaboration

University


Research

CELLTEX

Match Federal Funding and Philanthropy!

NIAMS 1R21 AR072870 NIAMS 1R21 AR073509 NIAMS 1R01 AR065445 NIAMS 1R21AR075997 NIAMS 1R21AR074132 NIAMS UG3 AR077748-01 RMIP **NIAMS 1R01 AR077045 NIAMS 1R21 AR079075 NIAMS 1 RO1 AR083471** NIA 1R44AG090114 **DoD N00014-18-RFI-0014 DoD N000014-21-S-B001**

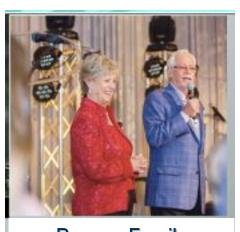
COLORADO

Colorado's Advanced Industries (AI) Accelerator Program Award

THE STEADMAN CLINIC COOK[®] MYOSITE

David/Ellie Rubenstein

Linda/Mitch Hart



family foundation

Steven/Mary Read

Mary-Sue/Mike Shannon

DOD USAMRAA "HT9425—25-1-0916"

Borgen Family Foundation

Shear Family Foundation

Crown Family Foundation

Ann Smead & Michael Byram

Monica Sasson

George/Rose Gillett

SPRI Executive Team & Science Leadership

Marc Philippon, MD
Chairman

Dan Drawbaugh
Chief Executive Officer (CEO)

Johnny Huard, PhD
Chief Scientific Officer
Director of Center for Regenerative &
Personalized Medicine

Lee Jones
Chief Operating Officer (COO)
Steadman Philippon Research
Institute

Aiping Lu, MD

Principal Investigator and Program

Director of Muscle Repair & Stem Cell

Biology

Xueqin Gao, MD, PhD

Principal Investigator and Program

Director of Bone & Cartilage Biology and

Tissue Engineering

Ping Guo, PhD
Principal Investigator and Program Director
of Genetic and Cellular Engineering

Naoki Nakayama, PhD
Principal Investigator and Program Director of
Stem Cell Engineering and Cartilage
Regeneration

Joana Roder, PhD
Clinical Trial, Biostatistician
Artificial Intelligence/Machine Learning

Anna-Laura Nelson, PhD
Bone Repair and Regenerative
Therapeutics

Greta Gohring, BS
CRPM (exosome therapeutic)

Grant Dornan, MS
Director of Center for Outcomes
Based Orthopaedic Research and
Chief Biostatistician

Scott Tashman, PhD
Principal Investigator
Director of Biomedical Engineering
and Imaging

Collin Smith, PhD Biomotion and BME

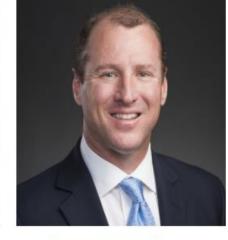
Alex Brady, MS

Manager of Robotics & Engineer

Justin Hollenbeck, MS
Biomechanical Research Engineer

Chloe Barton
Senior Trials Coordinator:
Recruitment, Protocol
Activities, Regulatory
Compliance

Sara Robinson, MS Clinical Trials Coordinator


Marc J. Philippon, MD Managing Partner, Sports Medicine, Hip

Randy W. Viola, MD Hand, Wrist, Elbow & Orthopaedic Trauma

Tom R. Hackett, MD Complex Knee, Shoulder & Elbow Surgeon

Peter J. Millett, MD, MSc Shoulder, Knee, Elbow Surgery & Sports Medicine

Thos A. Evans, MD Orthopaedic Interventionalist of Spine @ Joint, Regenerative Medicine Specialist &

Matthew T. Provencher, MD Complex Shoulder, Complex Knee ♥ Sports Surgery

Raymond H. Kim, MD Adult Joint Reconstruction, Knee & Hip

Stephen Yu, MD

Sports Medicine

Joel M. Matta, MD David A. Kuppersmith, MD Hip Disorders: Preservation, Replacement स्

C. Thomas Haytmanek Jr, MD Foot, Ankle & Trauma Surgery

Armando F. Vidal, MD Complex Knee, Shoulder & Sports Medicine

Jonathon D. Backus, MD Foot and Ankle Surgeon

Sports Medicine

Sports Medicine

Sports Medicine

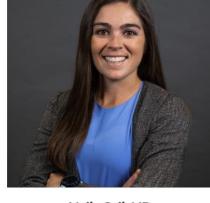
Heath Melugin, MD Sports Medicine

Sports Medicine

Sports Medicine

Parker Duncan, MD Trevor Shelton, MD Foot & Ankle Hip Preservation &

Marc Philippon, MD

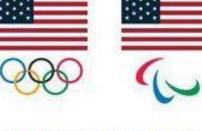

Johnny Huard, PhD Chief Scientific Officer Director of Center for Regenerative &

Lee Jones Chief Operating Officer (COO) Steadman Philippon Research

Kris John Alden, MD, PhD Total Joint & Adult Reconstructive Surgery

Malia Cali, MD Physical Medicine, Rehabilitation, Sports Medicine

THE STEADMAN CLINIC **STEADMAN PHILIPPON**


Alex Brady, MS Justin Hollenbeck, MS

Chloe Barton Senior Trials Coordinator: Recruitment, Protocol

Sara Robinson, MS

U.S. OLYMPIC & PARALYMPIC NATIONAL **MEDICAL CENTER**

Sports Medicine, Hip Preservation &

Nathan Cafferky, MD

Director of Center for Outcomes
Based Orthopaedic Research and
Chief Biostatistician

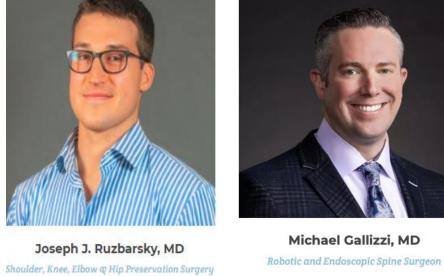
Principal Investigator
Director of Biomedical Engineering
and Imaging

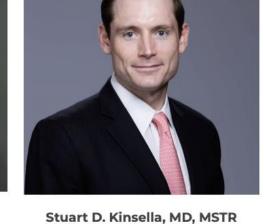


Leslie B. Vidal, MD Shoulder, Hip, Knee & Sports Medicine Specialist

Jonathan A. Godin, MBA, MD Shoulder, Knee, Hip & Sports Medicine Surgeon

Hand, Wrist and Elbow Surgery


Shoulder, Hip, Knee & Sports Medicine

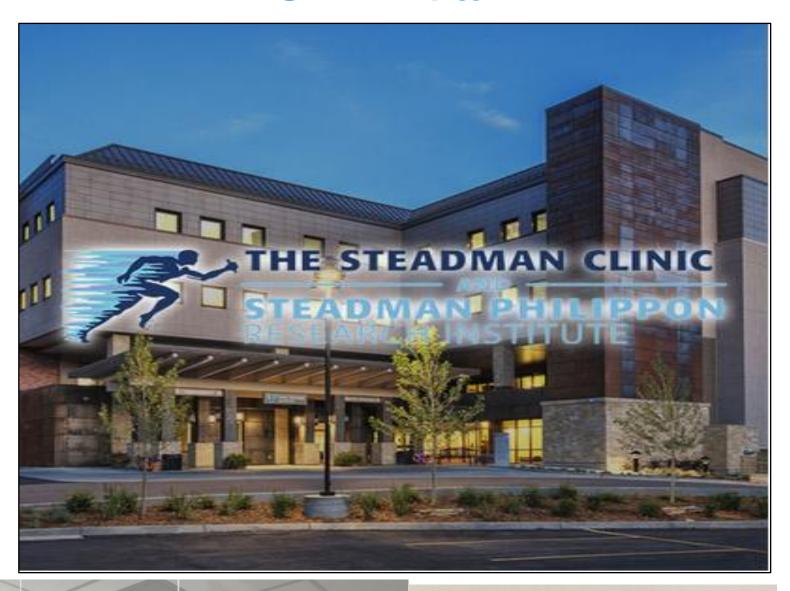


Spine Surgery, Neck & Back, Minimally Invasive & Motion Preserving Surgery

Spine Surgery, Neck & Back, Robotic and Navigation-Assisted Surgery

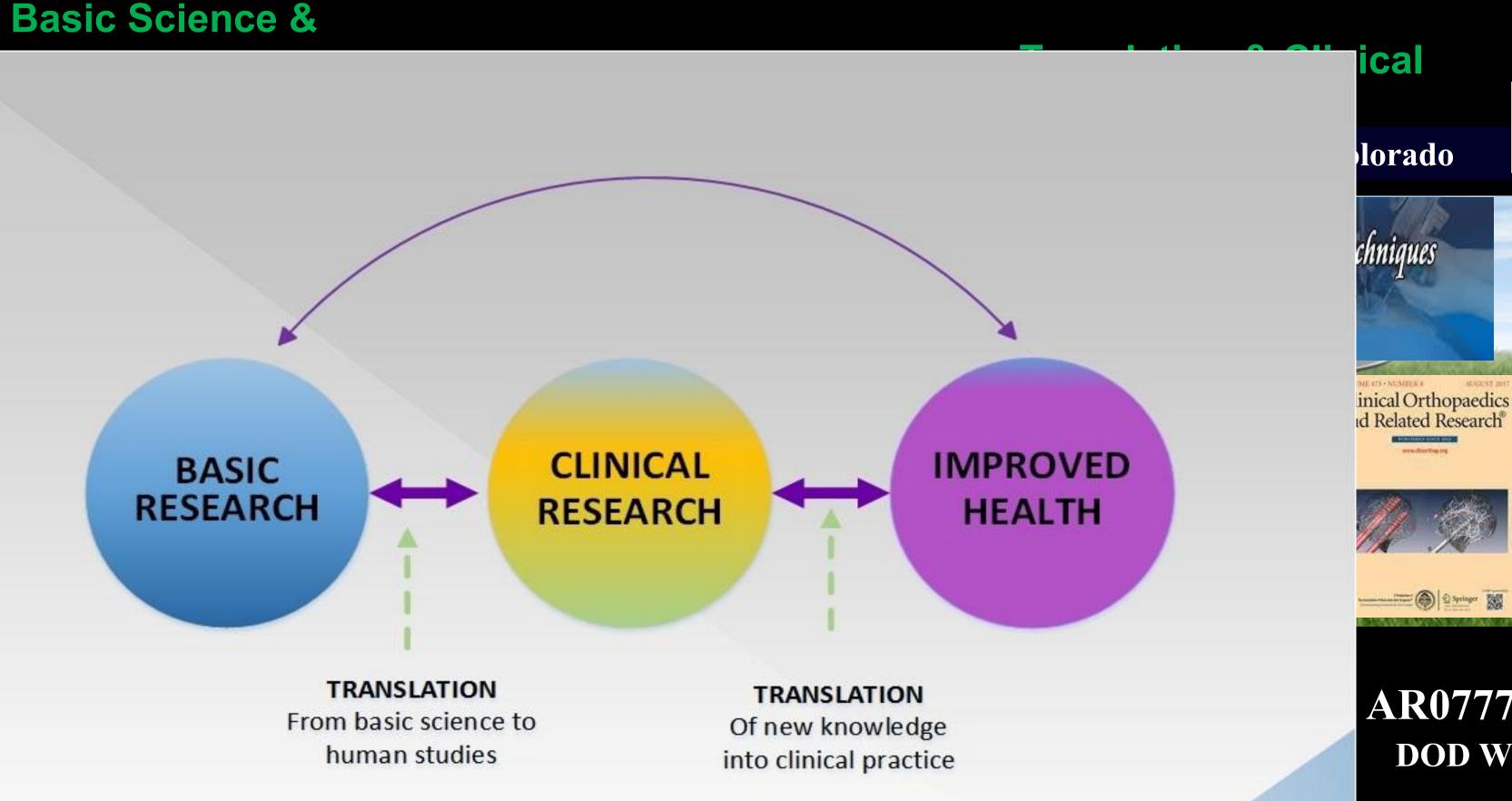
Snapshot of the SPRI footprint

TMI-Fort Collins, CO



SPRI-Vail

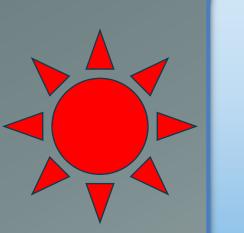
Frisco, CO



Our Vision at the Steadman Philippon Research Institute: Overcome The Academics Dilemma

NIAMS 1R21 AR0728 NIAMS 1R21 AR0735 NIAMS 1R01 AR0654 NIAMS 1R21AR0759 NIAMS 1R21AR074132 NIAMS 1R01 AR077045 NIAMS 1R21 AR079075

AR077748-01 RMIP DOD W81XWH-15-2-0003


DOD N00014-19-C-2052

DOD USAMRAA "HT9425—25-1-0916"

Regenerative Medicine

- Biomarker assessment
- Strategies for advanced healing & tissue regeneration
- Blocking fibrosis
- Reducing inflammation
- Promoting angiogenesis

Affiliate Faculty, Colorado State University

Biomotion and BME

Biomotion/Imaging

Assessing tissue structure

Director of Biomedical Engineering and

- Monitoring healing and/or degeneration
- Whole-body performance

TSC

(surgeons)

IMPROVE **ORTHOPAEDIC** CARE

Computational Imaging/movement biomechanics

- Loading effect on full body movement
- In vivo joint & tissue function
- DARI Motion analysis system

Justin Hollenbeck Biomechanical Researh

Biomechanics/Robotics

- Understanding anatomy
- Evaluating procedures and devices

Clinical trial coordinator

Clinical trial

Clinical Trials

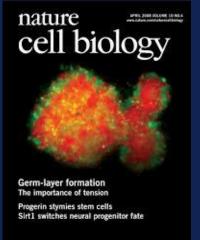
- Testing interventions in patients
- Institutional Review Board (IRB)
- Compliance with FDA

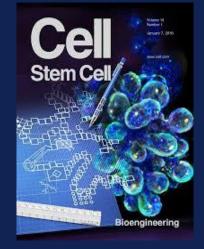
Outcomes Based Orthoapedic Research

- Patient-focused outcomes assessment
- Predictive Modeling, Artificial Intelligence/Machine Learning

Mr. Grant Dornan, MS Chief Biostatistician

Dr. Joana Roder Clinical Trial, Biostatistician Artificial Intelligence/Machine




Dr. Johnny Huard, PhD Regenerative & Translational Medicine

40 years of Research & Innovation


UQAR (1985-1988), University Laval (1989-1993), Mc Gill University (1994,1995) University of Pittsburgh (1996-2015), UTHealth & SPRI (2015-2019); SPRI (2019—) Gene Therapy, Stem Cells, Tissue Engineering, Regenerative Medicine, Orthobiologics

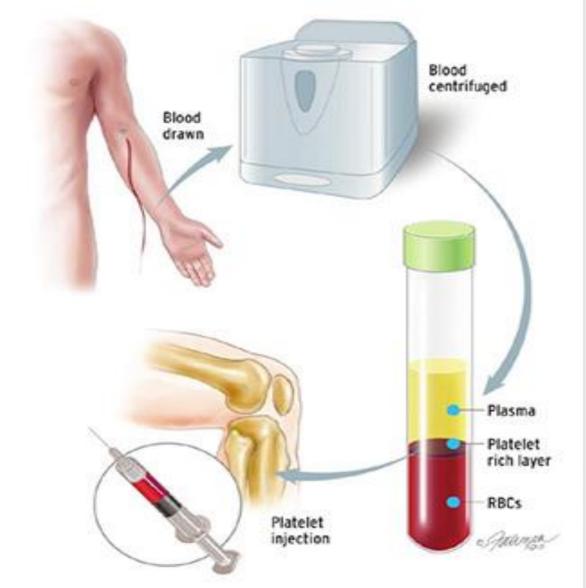
- Associate Faculty, Clinical/Biomedical Sciences, Colorado State University, Fort Collins, CO
- Professor of Orthopaedic Surgery at University of Pittsburgh, Pittsburgh, PA
- Professor of Surgery at Duquesne University, Pittsburgh, PA
- Professor of Orthopaedic Surgery at the University of Miami, Miami, FL
- Senior Fellow, Belmont University's Thomas Frist Jr, College of Medicine
- 488 manuscripts published (peer-reviewed journals)
- 45 patent applications
- Over 1000 abstracts presented at national/international meetings
- Over 100 awards: Kappa Delta Awards (2004, 2018), OREF Clinical Research award (2023), AOSSM: Cabaud (2000, 2019); Aircast (2003); Excellence (2019)
- Honorary Doctorate Degree, University of Quebec, Rimouski, Canada
- Over 50 federal grants (NIH, DOD, MDA, OREF,)
- 5 current NIH grants; 3 DOD contracts
- 6 current FDA approved & DOD/NIH sponsored clinical trials
- Over 150 invited lectures to national and international meetings
- Johnny Huard, PhD; Google Scholar:
 - Citations: 52399; h-index: 120; i-10-index: 417

SPRI's Regenerative & Translational Medicine Program

- Adult stem cells
 - Muscle stem cells
 - Adipose stem cells
 - Bursa stem cells
 - PDGFR+ cells
 - IPS cells
- OrthoBiologics
 - Platelet-Rich
 Plasma
 - Bone MarrowConcentrate
- FDA-approved drugs
- Telomerase activity
- Senolytic drugs
- Senomorphic drugs
- mTOR inhibitors
 - Rapamycin
 - Metformin
- Anti-fibrotic agent/microfracture
- Anti-angiogenic agent for OA

Biologics

Regenerative Medicine Approaches


Tissue Repair after Injury,
Disease & Aging

Therapeutics

Animal modelling

- Gene therapy
- CRISPR-CAS9 gene editing technology
- Exosomes/vesicles
- Coacervate
- Microspheres
- PA nanofibers
- Magnetic nanoparticles
- Dystrophic mice
 - Mdx, dKO
- Progeria mice
 - Z24, ERCC mice
- Wild-type mice
- Parabiosis/Pregnancy
- Super-healer (MRL/MpJ)
- Microfracture
- Osteoarthritis model
- Ligament reconstruction

Aspirate Concentrate Apply to Injury
Small Volume Automatic Process Ready in 15 Minutes

Bone Marrow aspirates

Preparation and administration of platelet-rich plasma

Platelet Rich Plasma

The global orthobiologics market is expected to reach USD 6.87 Billion in 2025

Review Article

Optimizing Clinical Use of Biologics in Orthopaedic Surgery:
Consensus Recommendations
From the 2018 AAOS/NIH U-13
Conference

Abstrac

Concern that misir

December 2013

Recommendations for development of high-quality multicenter clinical trials to strengthen the evidence behind orthobiologics!

(Dr. Goodrich), the University of Texas Health Science Center, University of Texas Dental Branch, Houston, TX (Dr. Huard), the University of Pittsburgh, Pittsburgh, PA (Dr. Irrgang and Dr. Tuan), the Steadman Clinic, Vail, CO (Dr. LaPrade), the Harvard University, Cambridge, MA (Dr. Lattermann), Santa Monica Orthopaedic and Sports Medicine, Santa Monica, CA (Dr. Mandelbaum), Columbia University, New York City, NY (Dr. Mao), the Northwell Orthopaedic Partners (Dr. McIntyre), the Cleveland Clinic (Dr. Muschler, Dr. Piuzzi, and Dr. Spindler), the Mayo Clinic (Dr. Tokish), the Advanced Ortho Centers (Dr. Zaslav).

February 15-17, 2018 at Stanford University, Stanford California.

Conference organizers

Constance R. Chu, MD

J Am Acad Orthop Surg 2018;00:1-14 DOI: 10.5435/JAAOS-D-18-00305

Copyright 2018 by the American Academy of Orthopaedic Surgeons. these treatments I patients, and to the characterization at forward, contemporating transcriptom coupled with bioin of standards. In adequality multicenter was that physician establishing high-postmarket surveil

The clinical use of platelet-rich platelet-rich platelet-based therapies paedic complications has great

Recommendations for Treatment

JAAOS Plus Webinar on Platelet-rich Plasma in Orthopaedic Applications: Evidence-based Recommendations for Treatment December 10, 9 PM Eastern, orthoportal.org/jaaos/

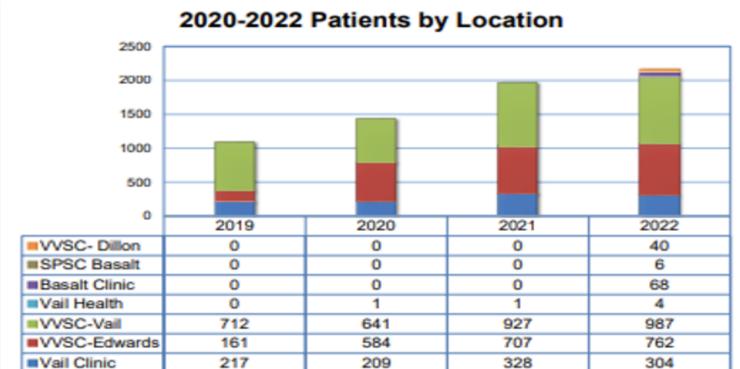
Adhesive Capsulitis of the Hip: A Review
Fingertip Injuries: An Update on Management

AAOS Appropriate Use Criteria Summary
Optimizing the Management of Full-Thickness Rotator Cuff Tears

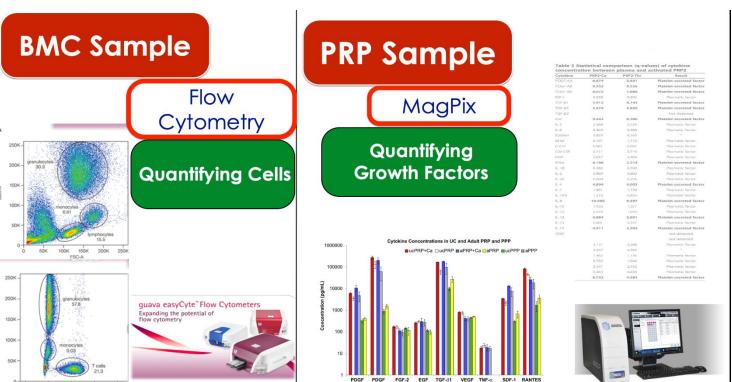
Applications: Evidence-based

AAOS Appropriate Use Criteria: Optimizing the Management of Full-Thickness Rotator Cuff Tears

The Official Clinical Journal of the AAOS


Month 00, 2018, Vol 00, No 00

Copyright © the American Academy of Orthopaedic Surgeons. Unauthorized reproduction of this article is prohibited.


ProofPoint Biologics (PPB) Orthobiologics The Steadman Clinic

BIOLOGICS

- ProofPoint Biologics (PPB) Laboratory is CLIA and COLA accredited and service-line of The Steadman Clinic that is led by Thomas A. Evans, MD and Johnny Huard, PhD.
- PPB has been primarily producing safe and reliable Platelet Rich Plasma (PRP), Leukocyte Rich (LR) or Leukocyte poor (LP-PRP), bone marrow concentrate (BMC) and Activated Fibrin Clot (AFC) biologic products since 2018 for autologous treatment of musculoskeletal disorders.
- Supports evidenced Based clinical trials initiated by SPRI.
- **Developing a database** of patient biologics parameters that can be correlated with patient outcomes, demographics and comorbidities.

ProofPoint Biologics: Who we are

Talena Williams, DMsc **Chief Scientific VP of Clinical Operations**

Jeff Christiansen PhD **Laboratory** Manager

Jo Ann Baldwin

Ako Gomilla Platt

Logan Martin Shelbi Green

3,000 orthobiologics injection in 2024 at the Steadman Clinic!. 90% PRP 10 % BMAC

Cureus

DOI: 10.7759/cureus.28498

A Review of Commercially Available Point-of-Care Devices to Concentrate Platelet-Rich Plasma

Toufic R. Jildeh ¹, Charles A. Su ², Matthew L. Vopat ², Justin R. Brown ², Johnny Huard

l. Orthopedic Surgery, Michigan State University, East Lansing, USA 2. Orthopedic Surgery, The Steadman Clinic, Vail, USA 3. Biological Sciences, The Steadman Clinic, Vail, USA

Corresponding author: Toufic R. Jildeh, touficiildeh@gmail.com

Platelet-rich plasma (PRP) is a promising therapy treatment option for multiple orthopedic conditions, which has demonstrated expanding clinical use. With increased clinical use of PRP, there has been a greater demand for point-of-care (POC) biologic devices. For this review, publicly available information provided by the device corporations, PubMed, Medline, and Embase databases were searched for studies related to POC device function. A scoping review study design was selected to explore the breadth of knowledge in the literature regarding PRP POC devices. ProofPoint Biologics demonstrated the highest laboratory platelet increase (5.2 \pm 0.28-fold) and the longest processing time (49 \pm 1.4 minutes). Celling demonstrated the lowest laboratory platelet increase (2.7 \pm 0.8-fold), while AcCELLerated had the fastest processing time (18 \pm 1.4 minutes for PurePRP® AB60 Pure (Pure Accelerated Biologics, Tequesta, FL) and 13.5 ± 2.1 minutes for AbsolutePRP® (Emcyte Corporation, Fort Myers, FL)). Celling had the lowest cost out of the various biologic devices. There is significant variability in the technical features, cost, processing time, and centrifugation parameters of the different commercially available point-of-care devices.

DOD 2019 PROJECT 1: PROSPECTIVE EVALUATION OF PLATELET-RICH PLASMA AND BONE MARROW CONCENTRATE TREATMENT TO ACCELERATE HEALING AFTER ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION

RETROSPECTIVE DESIGN: THE PURPOSE OF THE STUDY IS TO COMPARE THE QUALITY OF CARTILAGE HEALING AFTER HIP MICROFRACTURE PERFORMED DURING HIP ARTHROSCOPY SURGERY BETWEEN PATIENTS WHO TOOK LOSARTAN FOLLOWING SURGERY AND THOSE WHO DID NOT

DOD 2019 PROJECT 3: SENOLYTIC DRUGS ATTENUATE OSTEOARTHRITIS-RELATED ARTICULAR CARTILAGE DEGENERATION: A CLINICAL TRIAL

National Institute of Arthritis and Musculoskeletal and Skin Diseases

The Use of Senolytic and Anti-Fibrotic Agents to Improve the Beneficial Effect of Bone Marrow Stem Cells for Osteoarthritis

DOD 2020: THE USE OF SENOLYTIC AND ANTI-FIBROTIC AGENTS TO IMPROVE THE BENEFIT OF PLATELET-RICH PLASMA DURING HIP ARTHROSCOPY FOR TREATMENT OF

FEMOROACETABULAR IMPINGEMENT & LABRAL TEAR

DOD 2022: THE GOAL OF THIS PROPOSAL IS TO DEVELOP THE ADVANCED TOOLS FOR CHARACTERIZING CELLULAR SENESCENCE AND ITS RELATIONSHIPS TO HUMAN BIOPHYSICAL HEALTH AND PERFORMANCE WITH IMPLICATIONS FOR MILITARY MEDICINE

PRINCIPAL INVESTIGATORS: JOHNNY HUARD, PHD, PETER MILLETT, MD, MATT PROVENCHER, MD, ARMANDO VIDAL, MD, LESLIE VIDAL, MD, JON GODIN, MD, SCOTT TASHMAN, PHD

PRINCIPAL INVESTIGATORS: JOHNNY HUARD, PHD, MARC PHILIPPON, MD

PRINCIPAL INVESTIGATORS: JOHNNY HUARD, PHD, MARC PHILIPPON, MD, PETER MILLETT, MD, MATT PROVENCHER, MD, ARMANDO VIDAL, MD, LESLIE VIDAL, MD, JON GODIN, MD, SCOTT TASHMAN, PHD

PRINCIPAL INVESTIGATORS: JOHNNY HUARD, PHD, MARC PHILIPPON, MD, PETER MILLETT, MD, MATT PROVENCHER, MD, LESLIE VIDAL, MD, ARMANDO VIDAL, MD, JON GODIN, MD, SCOTT TASHMAN, PHD

PRINCIPAL INVESTIGATORS: JOHNNY HUARD, PHD, MARC PHILIPPON, MD

PRINCIPAL INVESTIGATORS: JOHNNY HUARD, PHD, MARC PHILIPPON, MD

NIH 4UH3AR077748-02: The Use of Senolytic and Anti-Fibrotic Agents to Improve the Beneficial Effect of Bone Marrow Stem Cells for Osteoarthritis.

DOD # N00014-18-RFI-0014: Office of Naval Research Request for Information (RFI) # N00014-18-RFI-0014. Response to the Treatment of Poly-Traumatic Injuries Using Orthobiologics, anti-fibrotic (Losartan) and senolytic agents (Fisetin).

DOD BAA # N00014-21-2716: The Use of a Senolytic Agent to Improve the Benefit of Platelet-Rich Plasma and Losartan for Treatment of Femoroacetabular Impingement and Labral Tear: A Pilot Study.

NIH 1RO1AR077045-01A1: Articular cartilage tissue engineering with human pluripotent stem cells. The goal of this project is to understand mechanisms of AC formation leading to a novel therapeutic method for joint cartilage repair.

NIH 1R21AR075997-01: Development of biological approaches to enhance skeletal muscle rehabilitation after anterior cruciate ligament injury.

NIH 1R21AR074132-01A1: Ablation of Non-Myogenic Progenitor Cells as a New Therapeutic Approach to Duchenne Muscular Dystrophy. The goal of this proposal is to test if genetic ablation of proliferating MSCs suppresses DMD progression and also to test if pharmacological ablation of adipose-derived MSCs suppresses DMD progression.

NIH Administrative supplement. PA-20-227: Administrative Supplement for Research on Dietary Supplements. Changes in senescent cells and SASP from bone marrow, synovial fluid, and peripheral blood after senolytic treatment. This administrative supplement is with a concurrent clinical trial (NIAMS UG3/UH3 AR077748-01 RMIP).

NIH 1R21 AR079075-01A1: SMART stem cells that autonomously down-modulate TFG-β signaling for Articular Cartilage Repair.

NIH: Therapeutic Application of Painless NGF to Accelerate Fracture Repair.

State of Colorado Collaborative Infrastructure award through the Advanced Industries Accelerator Program: The goal of this proposal is to develop the approaches to optimize stem cell banking.

Department of Defense (DoD) W81XWH18SBAA1: The goal of this proposal is to develop the advanced tools for characterizing cellular senescence and its relationships to human biophysical health and performance with implications for military medicine.

Prospective Evaluation of Platelet Rich Plasma (PRP) and Bone Marrow Aspirate Concentrate (BMAC)

Stem cell banking: Single harvest with BMAC storage for multiple injections will allow re-injection of BMAC after 6 months

Treatments to Appelerate Healing
Hematopoietic stem cell injection for reconstitute the bone
marrow of levilseries in the second state of the levilseries of the levi marrow of leukemia patients

At 6 months after AC led to less muscle we bearing in the ACLR k

At 12 months, no diff

No difference betwee measurement

PRP and BMAC led to function after ACLR

What to Know About Hematopoietic **Stem Cell Transplantation**

APPROVED *

Treats some blood cancers and immune disorders

A conditioning regimen is required (which can include radiation and/or chemotherapy medications)

Donors can be the recipient themselves or a donor with a matching HLA type may volunteer

Infusion may take

several hours

ment of approaches to improve marrow stem cells banking Johnny Huard Pl

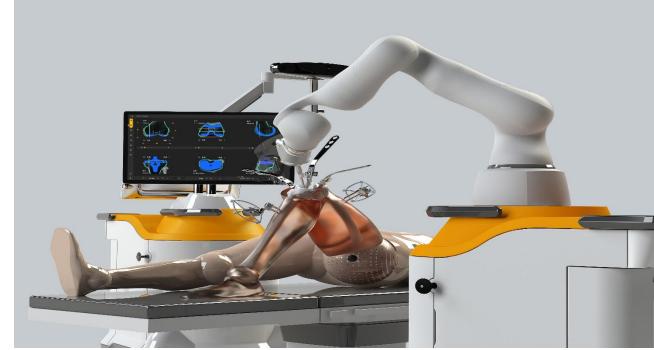
s Advanced Industries erator Program Award

COLORADO

Cs from fresh and frozen Bone Marrow Asfor their function in vitro and cartilage re-

1#, Zuokui Xiao 1, Xueqin Gao 1, Noah Knezic 1, Laura Chubb 2, Jonathan E Layne

est that the freezing process does not he function of MSCs from BMAC for These findings support the potential of a single harvest with BMAC storage ons, thereby enhancing the tissue repair AC.


Optimizing Orthopaedic Surgical Outcomes

Optimizing surgical tools

Optimizing surgical techniques

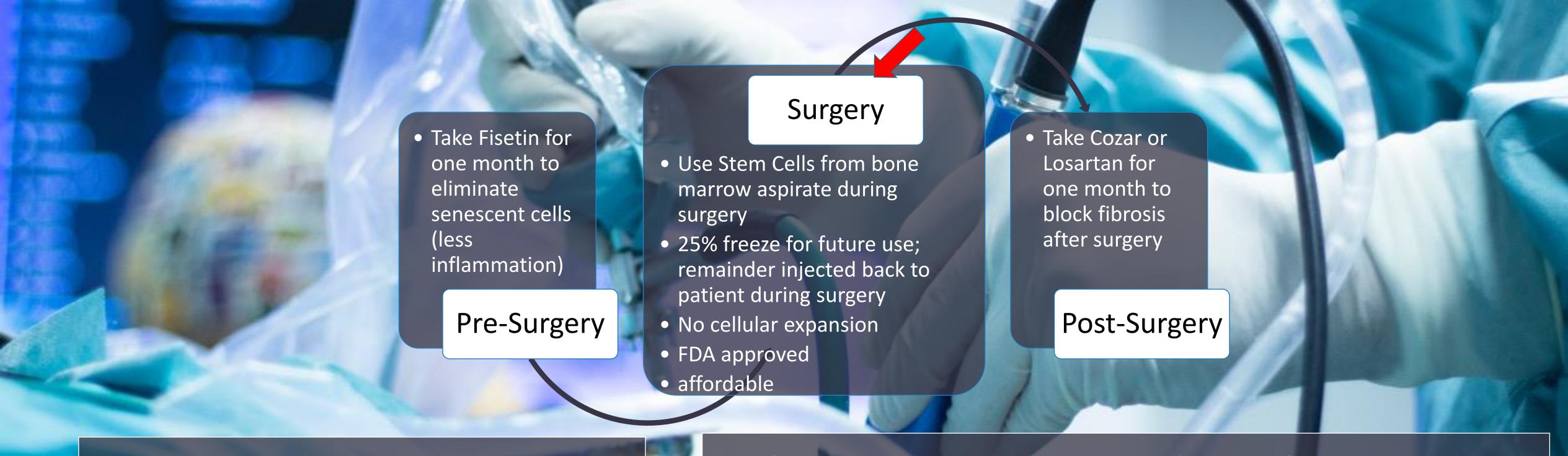
How about optimizing your Patients?

A key initiative of the regenerative medicine laboratory, in coordination with our ongoing clinical trials, is to optimize patients for Stem Cell Transplantation

We've already begun investigating how drug like losartan & supplements like Fisetin may enhance outcomes

Now we are looking at updating protocols to further optimize surgery

Proposed Optimization Protocol


 Take Fisetin for one month to eliminate senescent cells (less inflammation)

Pre-Surgery

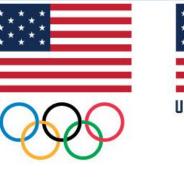
Surgery

 BMAC (bone marrow stem cells) injection to delay OA Take Cozar or Losartan for one month to block fibrosis after surgery

Post-Surgery

These new protocols put the patient at the center—looking at ways to provide the best possible outcomes before, during and after surgery

These new initiatives are already being studied with our Regenerative Medicine Innovation Project (RMIP) clinical trial, with plans to add the banking component in the future—a transformative approach to patient recovery


Harvesting and Banking your stem cells while you are undergoing your surgery at the Steadman Clinic!

The Use of Senolytic and Anti-Fibrotic Agents to Improve the Beneficial Effect of Bone Marrow Stem Cells for Osteoarthritis

Johnny Huard contact PI, Scott Tashman & Marc Philippon (Co-PIs)

NIH-RMIP: 1 UG3 AR077748-01

TREATMENTS (combined with bone marrow aspirate concentrate [BMAC):

- Senolytic agent (Fisetin) prior to stem cell harvesting and after BMAC injection to eliminate senescent cells/inflammation
- Anti-fibrotic agent (Losartan) to reduce Fibrosis and improve the benefit of BMAC for OA patients

4 arms:

- BMAC alone (25 patients)
- BMAC + Losartan (25 patients)
- BMAC + Fisetin (25 patients)
- BMAC + Losartan+ Fisetin (25 patients)

Achieved original target enrollment of n=100 by

January 11, 2023

Target date: 4/1/2023

Key clinical trial statistics:

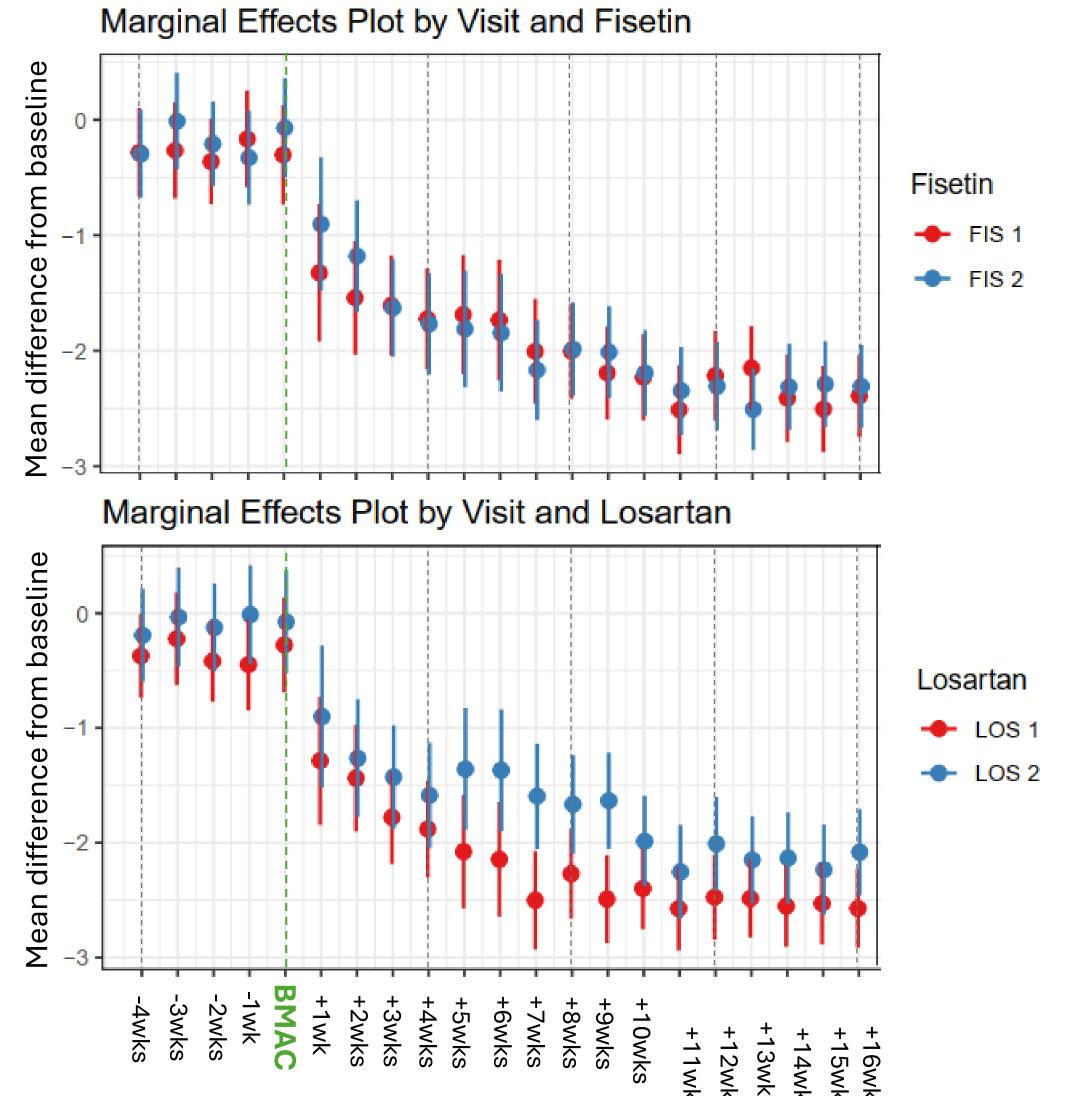
Approximately 80% of clinical trials are delayed or closed because of problems with recruitment.

What are the most significant technical, operation and scientific challenges that you have experienced during the trial?

Sex & Minority Recruitment

60 males and 60 females have been enrolled

Pause recruitment in the middle of the trial to enroll minority (<u>Hispanic</u> <u>participants)</u> which has increased to 31%


Original target: Based on the population of Eagle County alone.

This require an integrated interdisciplinary approach with a combined effort of the DSMB, IRB, Hospital executive and etc.

Achieved Minority Recruitment Goals Using the Following Measures:

- Recruitment area was expanded beyond Eagle County
- Translated all patient facing materials into <u>Spanish</u>
- Retained interpreters on-site for consenting and baseline visits
- Retained permanent staff fluent in Spanish
- Recruited via <u>radio ads, newspaper and social media, and tv spots</u> with established local community member

NRS Average Pain IN RMIP enrolled patient – Preliminary Internal Use – data and analysis still to be verified

Reductions indicate less pain

UNBLINDED DATA

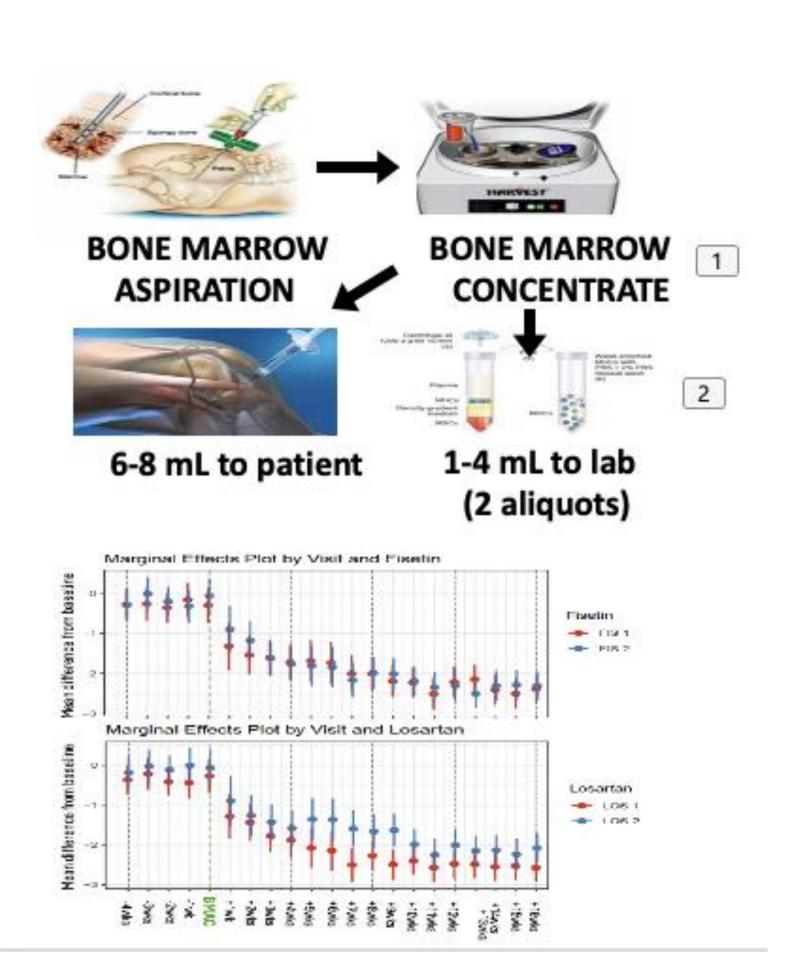
FIS 1 = subjects receiving FIS level 1

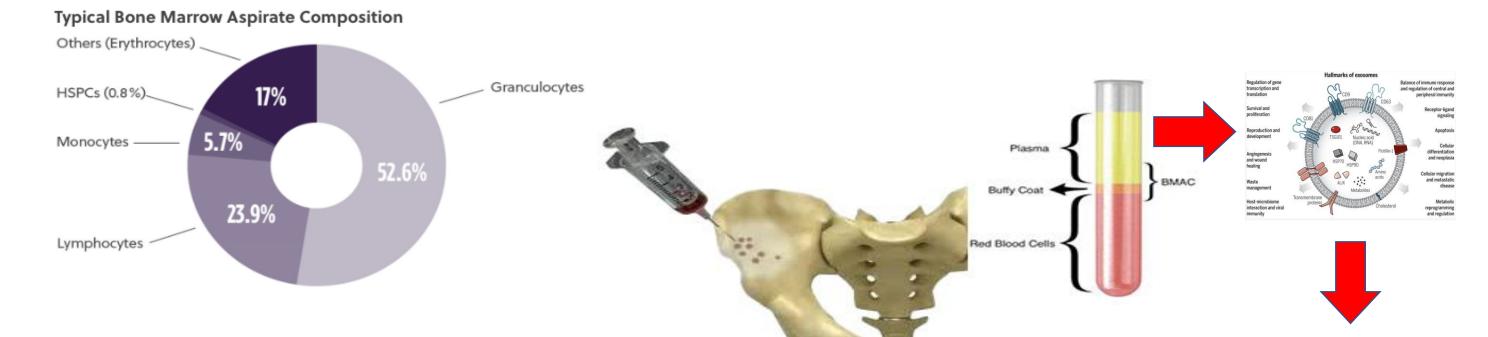
FIS 2 = subjects receiving FIS level 2

LOS 1 = subjects receiving LOS level 1

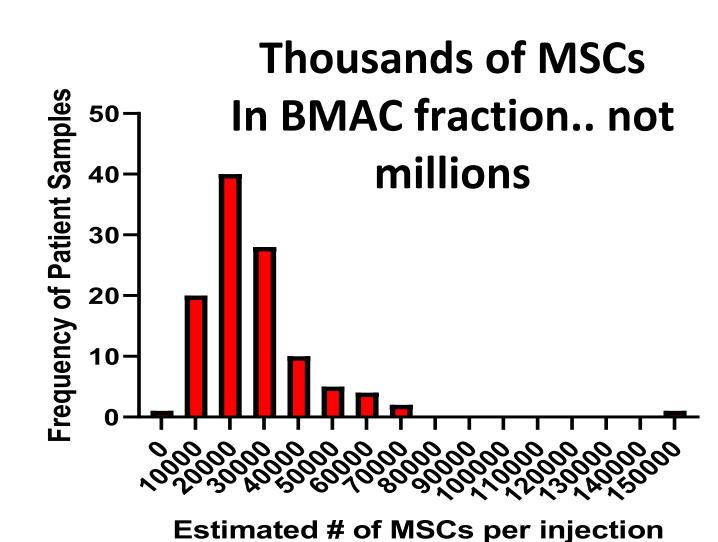
LOS 2 = subjects receiving LOS level 2

A Numeric Pain Rating scale for pain or NRS doesn't have a single, universally agreed-upon value; it refers to the subjective cut-off point on a Numeric Rating Scale (0–10) that separates mild from moderate or severe pain, which varies by study, clinical setting, and patient. While some guidelines use a threshold of \geq 3 or \geq 4, others suggest that scores of 1–4 are mild, 5–6 are moderate, and 7–10 are severe.


The Use of Senolytic and Anti-Fibrotic Agents to Improve the Beneficial Effect of Bone Marrow Stem Cells for Osteoarthritis



Johnny Huard contact Pl, Scott Tashman & Marc Philippon (Co-Pls)


NIH-RMIP: 1 UG3 AR077748-01

What are the most significant technical, operation and scientific challenges during the trial?

Only about 0.001-0.01% of the cells in the bone marrow are MSCs

1.56 billions exosomes (extracellular vesicles) per ml of serum

- Exosomes are naturally occurring, nano-sized biological vesicles released by cells that act as delivery vehicles for proteins, lipids, and genetic material like mRNA and microRNA to other cells.....
- This communication can influence nearby and distant cells by transferring bioactive molecules that trigger various effects, such as promoting tissue repair....

Can exosomes be used to delay osteoarthritis?

nature > bone research > review articles > **a**r

osteoarthritis

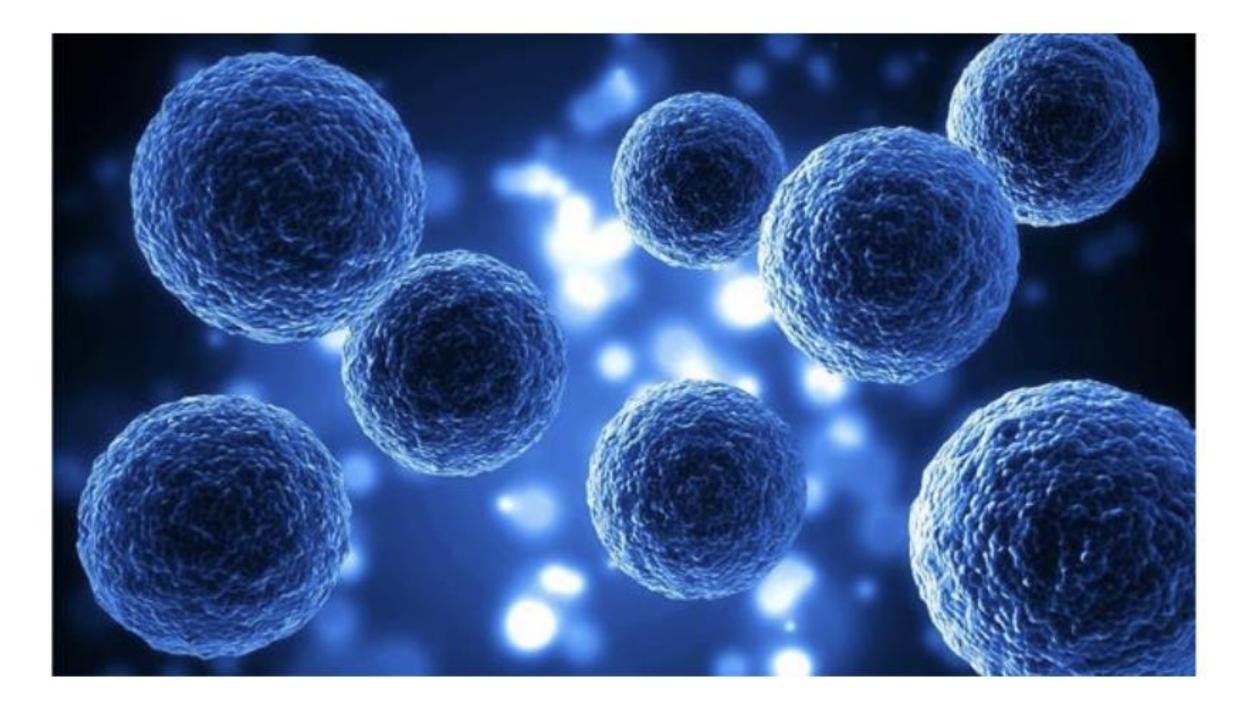
Zhenhong Ni, Siru Zhou, Song Li, Liang Kuang, Xiaolan Du 2 & Lin Chen 2

Bone Research 8, Article number: 25 (2020) 19k Accesses | 90 Citations | 7 Altmetric | 1

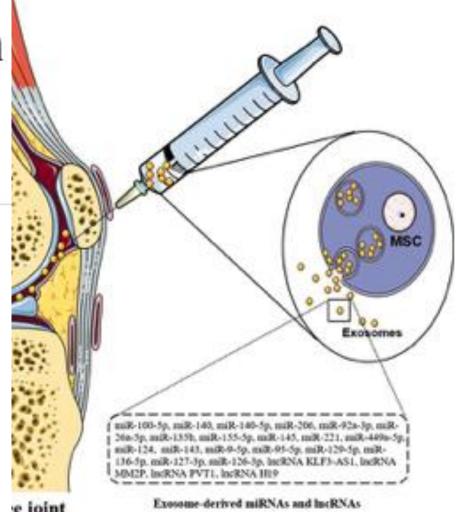
> Stem Cell Res Ther. 2020 Jul 10;11(1):276. doi

Bone marrow mesenchym exosomes protect cartilage osteoarthritis pain in a rat

Lei He 1 2 3, Tianwei He 1 2 3, Jianghao Xing Yuyong Chen 1 2 3, Depeng Wu 1 2 3, Zhenmi


Affiliations + expand

PMID: 32650828 PMCID: PMC7350730 DOI:


Free PMC article

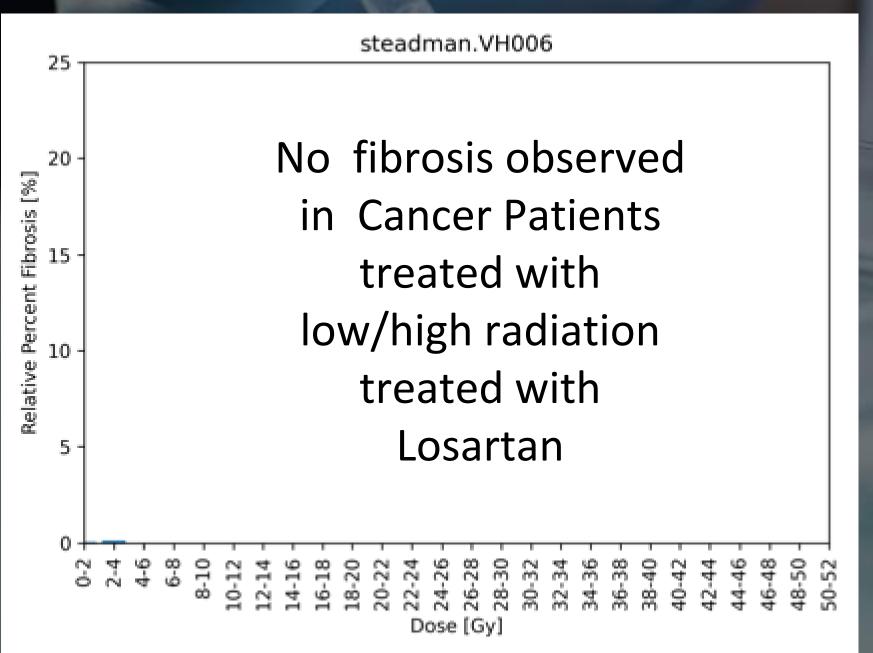
Department of Defense (DoD) Awards Nearly \$1 Million to Steadman Review Article | Open Access | Published: 19 Jt | Philippon Research Institute (SPRI) for Breakthrough Study on Exosomes: roles and thera Extracellular Vesicles Therapeutic for Joint Regeneration

by Josh Sandberg September 3, 2025

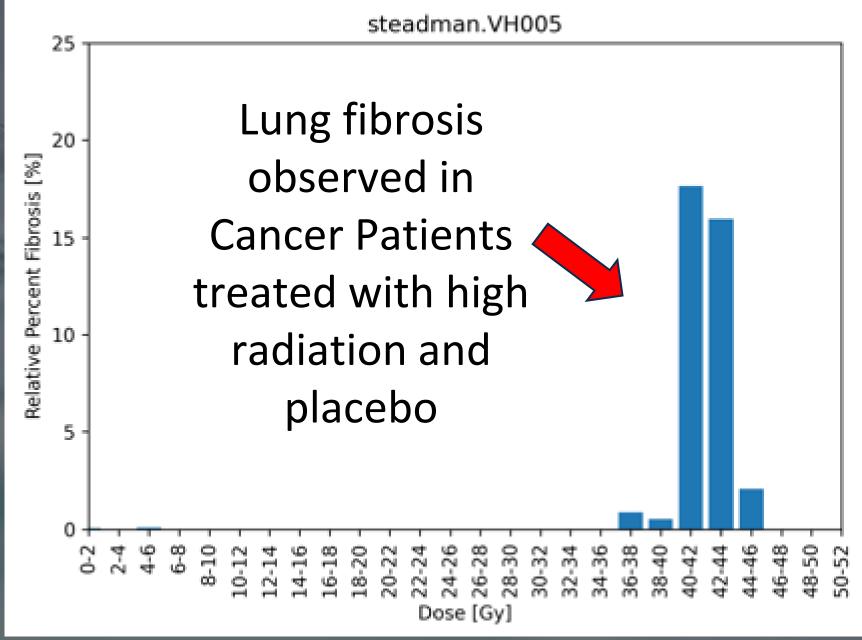
New research at SPRI's Vail and Basalt, Colo. labs will explore how microscopic messengers in the body called extracellular vesicles—often referred to as exosomes—can be enhanced to treat osteoarthritis and other musculoskeletal conditions.

ilage Repair: Surgical Approaches, and the Promise of Exosomes

, Jonathan Layne , Greta Gohring, Jeff Christiansen, Ben Rothrauff


With a dedication to clinical translation, SPRI made significant progress on its 7 active clinical trials this year

- SPRI completed enrollment ahead of schedule for the NIH-funded Regenerative Medicine Enrollment Project and the results are being analyzed
- SPRI completed enrollment for 3 DOD funded clinical trials and the results are being analyzed
- SPRI launched two new clinical trials that began enrollment in 2024: a new spine clinical trial with Dr. Gill and a total knee clinical trial with Dr. Kim
- Additionally, SPRI is collaborating with Vail Health on 3 additional clinical trials: mental health (2) and cancer (1)


The SPRI x Shaw Cancer Center collaborative pilot program utilizing Losartan to reduce radiation-induced fibrosis in breast cancer patients has produced remarkable results, demonstrating near zero fibrosis in several patients, and has the potential to be applied to all radiation-based oncology

Example of Pilot Findings

Patient 6 (low ACE = Losartan)

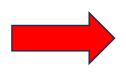
Patient 5 (High ACE = No Losartan)

The pilot has demonstrated:

- Positive impact returning key biomarkers to base level
- Minimal lung fibrosis in patients treated with Losartan
- Tremendous potential for further cancer research

Optimizing Surgical Outcome Research Program

Pre-During-Post Optimizing Surgical Outcome


Before Surgery

Personalized Medicine

Biomarkers, genetic analyses
J Huard, Barry Sandler

Exercise Mimetics and Skeletal Muscle health

Aiping Lu, PhD, Program Director

Behavioral health Innovation
Center, Mental Health Program
Dr. Charles Raison, Chris Lindley,
Barry Sandler

Novel Imaging & Motion analyses

Scott Tashman Ph.D and Colin Smith Program Directors

Healthy Aging drugs and supplements

Xuqing Gao (MD/Ph.D Program Director

During Surgery

Stem Cell Banking

Aiping Lu Ph.D; Ruth McCarrick-Walmsley BS, Program Director

Crispr Cas9 SMART stem cells

Naoki Nakayama Ph,D, Program
Director

Inducible Pluripotent Stem cell technology

Naoki Nakayama Ph,D, Program
Director

Exosomes Therapeutics

Ping Guo (Ph.D); Greta Gohring (BS), Program Directors

mRNA Technology for musculoskeletal Repair

Xuqing Gao MD/Ph.D

After Surgery

Fibrosis chronic inflammation Research Program

Dr. Ping Guo Program Director

Computational modeling
Movement biomechanics and
dynamic imaging
Dr. Tashman, Smith

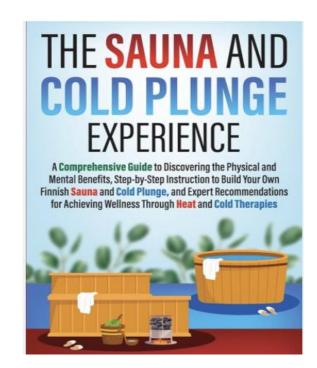
Al & ML Predictive Model for musculoskeletal Repair

Joanna Roder Ph.D, Grant Dornan MSc, Program Directors

Mental Health Research Program

Chloe Barton, Sara Robinson, Luz Thede, David Kuppersmith

Blood Flow Restriction
Howard Head Vail Health


Regenerative **During Surgery**

Regenerative Re-habilitation

Sauna and cold plunge, a practice known as contrast therapy, shows promise for treating depression and anxiety by regulating stress hormones, boosting feel-good neurotransmitters like norepinephrine and serotonin, and improving sleep and

mental clarity

VH-SPRI Behavioral Health Studies

CHILL'D Study - Approved

Cold and Heat Investigation to Lower Levels of Depression (CHILL'D)

Program Director: Charles Raison, MD, Johnny Huard Ph.D

PI: Barry Sandler, DO

Medically healthy adults currently experiencing depressive symptoms is randomized to receive either a single Whole Body Hyperthermia (heat therapy) treatment or a Whole Body Hyperthermia treatment followed by a cold water plunge.

CRPM will perform senescence and biomarker analyses at the following timepoints:

- Baseline (pre-intervention)
- Baseline (post-intervention)
- I week post-intervention
- 2 weeks post-intervention

VH BHIC enrolled many participant into the CHILL'D Study on 5/30/24. The first subject completed the protocol follow-ups on 6/18/24. Now they have many patients enrolled. The SPRI CRPM lab has processed samples received for 14 subjects and has stored them for future analyses.

VH BHIC is continuing to screen individuals for study enrollment.

Which biomarkers for mental health are we using?

INSTITUTIONAL REVIEW BOARD

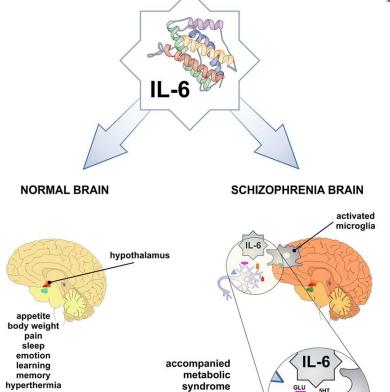
Interleukin-6 (IL-6) is considered a potential biomarker for depression, elevated levels of IL-6 in the blood of individuals diagnosed with Major Depressive Disorder (MDD), suggesting a link between inflammation and depressive symptoms

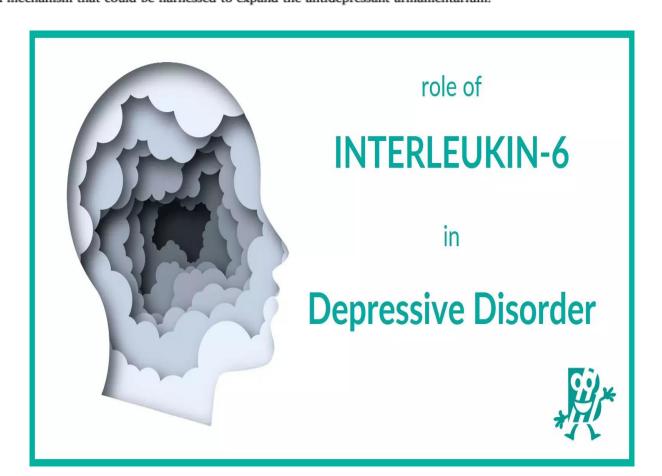
Short Communication

The antidepressant effect of whole-body hyperthermia is associated with the classical interleukin-6 signaling pathway

Naoise Mac Giollabhui ^{a,*}, Christopher A. Lowry ^b, Maren Nyer ^a, Simmie L. Foster ^a, Richard T. Liu ^a, David G. Smith ^c, Steven P. Cole ^d, Ashley E. Mason ^e, David Mischoulon ^a, Charles L. Raison ^{f,g,h}

- ^a Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- b Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
- ^c Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- d Research Design Associates, Yorktown Heights, NY, USA
- e Department of Psychiatry, University of California, San Francisco, CA, USA
- f Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- g Vail Health Behavioral Health, Edwards, CO, USA
- b Department of Spiritual Health, Woodruff Health Sciences Center, Emory University, Atlanta, GA, USA


ARTICLE INFO


Keywords: Depression Randomized Clinical Trial Whole-body Hyperthermia Interleukin-6 Soluble Interleukin-6 Mechanism

Treatment

ABSTRACT

There is urgent need for novel antidepressant treatments that confer therapeutic benefits via engagement with identified mechanistic targets. The objective of the study was to determine whether activation of the classical anti-inflammatory interleukin-6 signaling pathways is associated with the antidepressant effects of whole-body hyperthermia. A 6-week, randomized, double-blind study compared whole-body hyperthermia with a sham condition in a university-based medical center. Medically healthy participants aged 18-65 years who met criteria for major depressive disorder, were free of psychotropic medication use, and had a baseline 17-item Hamilton Depression Rating Scale score ≥ 16 were randomized with 1-to-1 allocation in blocks of 6 to receive whole-body hyperthermia or sham. Of 338 individuals screened, 34 were randomized, 30 received interventions and 26 had ≥ 2 blood draws and depressive symptom assessments. Secondary data analysis examined change in the ratio of IL-6:soluble IL-6 receptor pre-intervention, post-intervention, and at weeks 1 and 4. Hierarchical linear modeling tested whether increased IL-6:soluble IL-6 receptor ratio post-intervention was associated with decreased depressive symptom at weeks 1, 2, 4 and 6 for those randomized to whole-body hyperthermia. Twenty-six individuals were randomized to whole-body hyperthermia [n = 12; 75 %] female; age = 37.9 years (SD = 15.3) or sham [n = 14; 57.1 %] female; age = 41.1 years (SD = 12.5). When compared to the sham condition, active whole-body hyperthermia only increased the IL-6:soluble IL-6 receptor ratio post-treatment [F(3,72) = 11.73, p]< .001], but not pre-intervention or at weeks 1 and 4. Using hierarchical linear modeling, increased IL-6:sIL-6R ratio following whole-body hyperthermia moderated depressive symptoms at weeks 1, 2, 4 and 6, such that increases in the IL-6:soluble IL-6 receptor ratio were associated with decreased depressive symptoms at weeks 1, 2, 4 and 6 for those receiving the active whole-body hyperthermia compared to sham treatment (B = -229.44, t = -3.82, p < .001). Acute activation of classical intereukin-6 signaling might emerge as a heretofore unrecogovel mechanism that could be harnessed to expand the antidepressant armamentarium.

Whole Body Hyperthermia + cold plunge influences plasma interleukin (IL-6post-treatment in patients with major depressive disorders

Preoperative depression and anxiety negatively impact surgical outcomes in female patients undergoing major surgery

- Depression significantly worsens surgical outcomes by increasing the risk of complications, such as infections, delirium, and readmissions, and can also prolong recovery and lead to poorer functional recovery and patient satisfaction
- Addressing depressive symptoms before surgery, through interventions and support, is crucial for optimizing patient recovery and improving overall surgical results.

Original Study

Preoperative Depression and Anxiety Impact on Inpatient Surgery Outcomes

A Prospective Cohort Study

Roxana Geoffrion, MD,* Nicole A. Koenig, BA,* Meimuzi Zheng, MSc,* Nicholas Sinclair, BSc,* Lori A. Brotto, PhD,* Terry Lee, PhD,† and Maryse Larouche, MD MPH‡

Objectives: To determine the association of preoperative mood symptoms and postoperative adverse outcomes; to explore

Background: Depression and anxiety can increase postoperative mortality. Psychological stress is associated with a chronic inflam matory response unfavorable to postsurgical healing.

Methods: Prospective cohort study. Patients were recruited from surgical preadmission clinics at a university hospital. Preoperative depression and anxiety were measured via the Beck Depression and Beck Anxiety Inventories (BDI-II and BAI). Our primary outcome was a composite of postoperative complications, extended length of stay (ELOS) and early readmission. Associated variables included demographics, preoperative pain, pain tolerance/catastrophizing, coping mechanisms, postoperative pain, and opioid use.

Results: Of 1061 recruited patients (ten surgical specialties, 2015–2020), 455 males and 486 females had preoperative and postoperative data available. Mean age was 62.9 (range 20.2–96.2). At baseline, 9.3% of patients had moderate or severe depression; 7.4% had moderate or severe anxiety. Females were more likely to be moderately or severely depressed (11% vs 7%, P = 0.036) and moderately or severely anxious (9% vs 6%, P = 0.034). Females had significantly fewer reported comorbidities and lower American Society of Anesthesiologists category (P < 0.001). Increasing BDI-II and BAI scores significantly increased likelihood of postoperative complications, ELOS, and/or hospital readmission in females (adjusted odds ratio [aOR] = 2.57 for BDI-II 1-19 vs 0, P = 0.041; aOR = 4.48 for BDI-II > 19 vs 0, P = 0.008; aOR = 1.54 for BAI \leq 6 vs >6, P = 0.038) but not in males. Mood

Conclusion: Preoperative depression and anxiety negatively impact surgical outcomes in female patients undergoing major surgery

Pre-habilitation with (sauna/cold plunge, CBD, Psilocybin) to reduce depression & anxiety to consequently optimize surgical outcomes in patients undergoing major surgery

Comprehensive Healthy Aging concierge medicine

Healthy Aging

Diet

Eat Healthy

Balanced diet

Caloric Restriction

Intermittent Fasting

Lifestyle

Stay active

Exercise

Sleep

Reduce stress
Stay connected

No smoking No drinking

PERSONALIZED MEDICINE

Personalized Medicine

Biomarkers

Aging

Inflammatory

Fibrotic Disease

Regenerative Medicine

Stem Cell

Banking

Stem Cell

Therapy

PRP Exosomes Drugs

Metformin

Rapamycin Senolytics

Telomerase

Activity

Exercise

mimetics

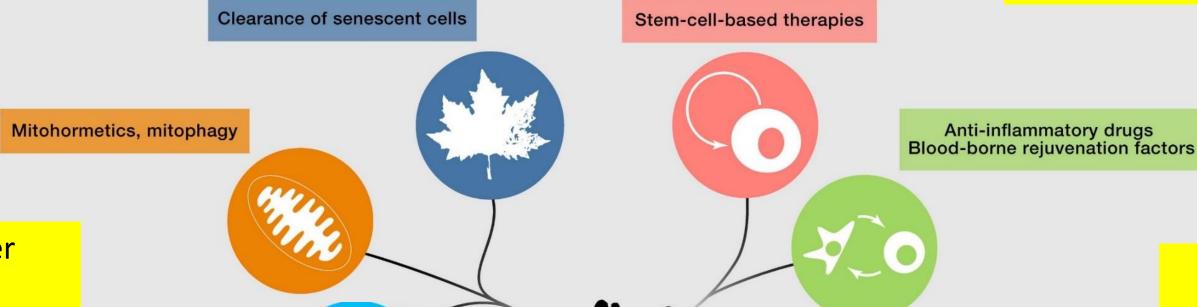
Evidence Based Medicine / Patient Centered Care

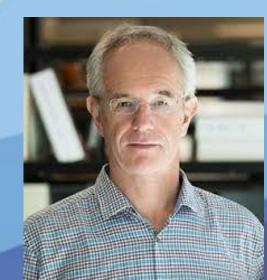
Changing Lives by Keeping People Healthy/Active

Healthy Aging Program

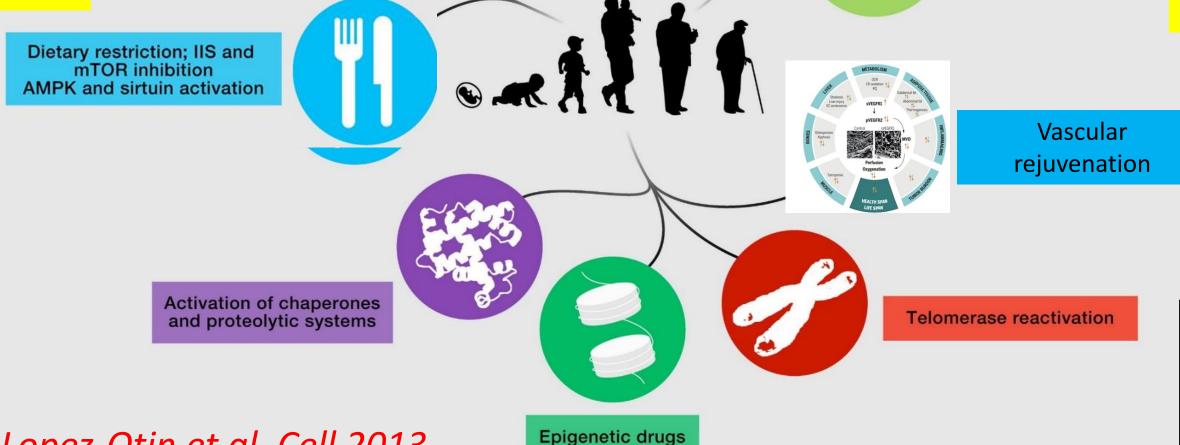
Regenerative Medicine & Drugs/supplements

The Hallmarks of Aging



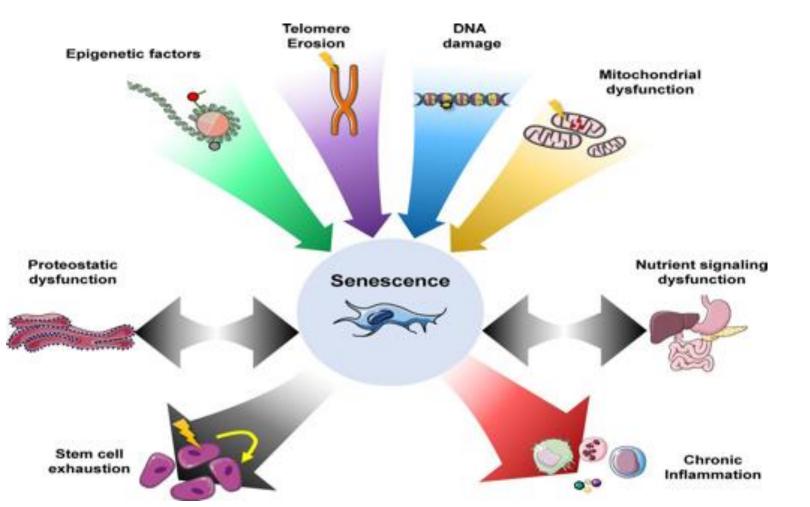

Johnny Huard Vail, Colorado

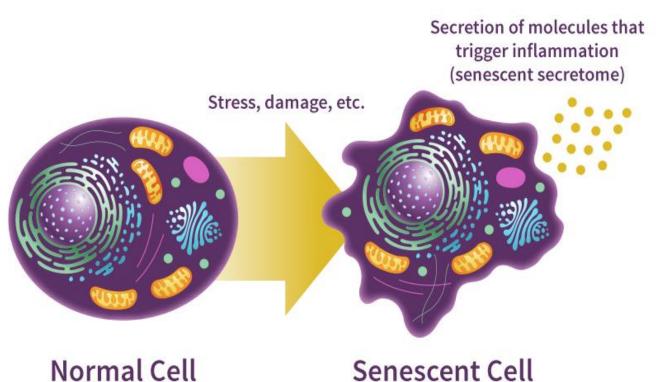
Laura Niedernhofer **U.** Minnesota


Paul Robbins U. Minnesota

Eric Verdin **Buck Institute**

Tamara Alliston UCSF

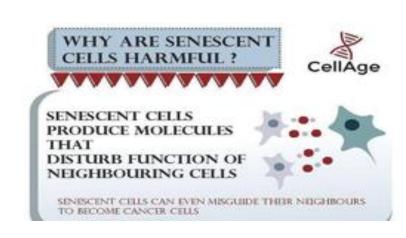

John Cooke Methodist Inst. Houston



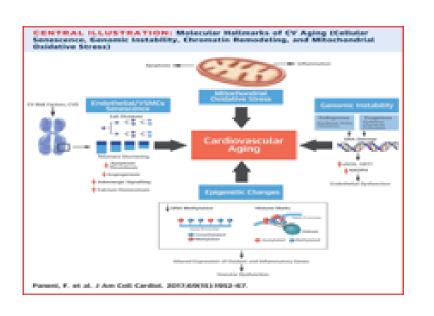
Vihang Narkar **UT Health** Houston

Killing/Clearing Senescent Cells to Delay Age-Related Diseases and Conditions

Senescence-associated secretory phenotype (SASP)



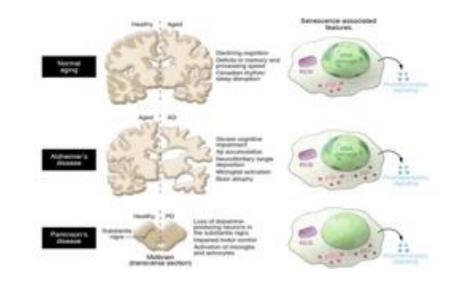
- SENOLYTICS OVERVIEW -SENOLYTICS: Removing senescent cells Rapamycin Dasatinib Quercetin Alvespimycin (17-D)


Cancer

Cellular Senescence in Cancer and Aging

Manuel Collado, Maria A. Blasco, and Manuel Serrano1,* ¹Spanish National Cancer Research Center (CNIO), Madrid, Spain *Correspondence: mserrano@cnio.es DOI 10.1016/j.cell.2007.07.003

Cardiovascular disease

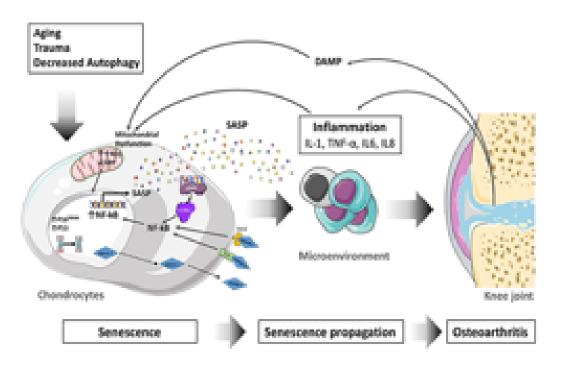

Ageing Research Reviews Volume 60, July 2020, 101072

Targeting senescent cells to attenuate cardiovascular disease progression

Ping Song 🌣 , Qiang Zhao, Ming-Hui Zou

Neurodegeneration

Feature Review


Cellular senescence at the crossroads of inflammation and Alzheimer's disease

Ana Guerrero ^{1, 2}, Bart De Strooper ^{1, 2, 3, 4}, I. Lorena Arancibia-Cárcamo ^{1, 2} $\stackrel{>}{\sim}$ $\stackrel{\boxtimes}{\sim}$

Osteoarthritis

Metformin

Fisetin

Senescent cells and osteoarthritis: a painful connection

Ok Hee Jeon, ..., Judith Campisi, Jennifer H. Elisseeff

J Clin Invest. 2018;128(4):1229-1237. https://doi.org/10.1172/JCl95147.

SPRI now has definitive scientific evidence that Fisetin reduces senescent cells and age-related serum biomarkers

Our team investigated a large cohort (175) of healthy and osteoarthritic patients to test the impact of senolytic therapeutics; elevated cellular senescence was confirmed in osteoarthritis (OA) patients

Through this research, the SPRI team now believes they will be able to detect changes in blood following senolytic therapy, which may lead to the prediction of age-related orthopaedic decline

Our team believes this research may be clinically pertinent for quantifying cellular senescence and determining its role in OA progression

Aging Cell. 2024 May; 23(5): e14113. Published online 2024

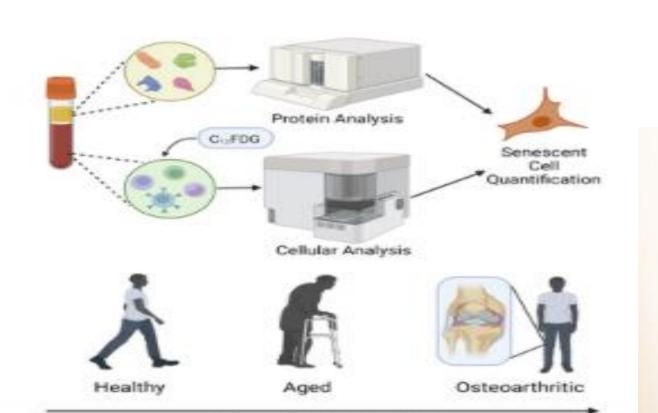
May 6. doi: 10.1111/acel.14113

¹Center for Regenerative Sports Medicine Steadman Philippon Research Institute, Vail, Colorado, USA

²Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA

³Department of Biochemistry and Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA ⁴Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA

Orthopaedic Trauma Institute, University of California San Francisco, San Francisco, California, USA


Johnny Huard, Center for Regenerativ Sports Medicine, Steadman Philippon Research Institute, 181 W. Meadow D Vail, CO, USA. Email: huard@scrivall.org

8.8

Funding information
National Institute of Arthritis and
Musculoskeletal and Skin Diseases, Grant
Award Number: 3 UH3 AR077748D2S1 and UH3AR077748; Orthopaedic
Research and Education Foundation,

Chronic conditions associated with aging have proven difficult to prevent or treat. Senescence is a cell fate defined by loss of proliferative capacity and the development of a pro-inflammatory senescence-associated secretory phenotype comprised of cytokines/chemokines, proteases, and other factors that promotes age-related diseases. Specifically, an increase in senescent peripheral blood mononuclear cells (PBMCs), including T cells, is associated with conditions like frailty, rheumatoid arthritis, and bone loss. However, it is unknown if the percentage of senescent PBMCs associated with age-associated orthopedic decline could be used for potential diagnostic or prognostic use in orthopedics. Here, we report senescent cell detection using the fluorescent compound C₁₂FDG to quantify PBMCs senescence across a large cohort of healthy and osteoarthritic patients. There is an increase in the percent of circulating C₁₂FDG+PBMCs that is commensurate with increases in age and senescence-related serum biomarkers. Interestingly, C₁₂FDG+PBMCs and T cells also were found to be elevated in patients with mild to moderate osteoarthritis, a progressive joint disease that is strongly associated with inflammation. The percent of C₁₂FDG+PBMCs and age-related serum biomarkers were decreased in study participants taking the senolytic drug fisetin. These results demonstrate quantifiable measurements in a large group of participants that could create a composite score of healthy aging sensitive enough to

be clinically useful for quantifying cellular senescence and determining how and if it

Healthy Aging Program Personalized Report

HEALTHY AGING PROGRAM

Personalized Report

NAME

DATE OF REPORT August 26, 2025

PERS(MEDI

An Individualized

Personalized media treatments and preincluding genetics, characteristics tell a tailored approach

Precision medicine
when considering t
partners in their or
molecular and cell
early interventions

NEXT STEPS

What do these results mean for you?

These results are not intended as a diagnostic tool but should serve as a guide for focusing on adopting healthy habits and positive lifestyle choices. This includes maintaining a balanced diet, engaging in regular physical activity, staying mentally active, and prioritizing social and emotional well-being — all of which help positively influence your cellular senescence results. Additionally, you may find it beneficial to consult with your healthcare provider regarding the incorporation of supplements, such as Fisetin, Quercetin, and others, which may help reduce cellular senescence.*

Senescence testing can be repeated, ideally on an annual basis, to monitor any changes relative to your baseline results.

The aim of our Healthy Aging am is to integrate various tests — such as cellular se ence, inflammatory biomarkers, and telomere length — to more accurately assess your aging status. Our testing protocols are continually refined as we collect data from more individuals, improving the precision of your percentile estimation within your age group.

For further insight, the following publications provide more information regarding our testing and the implications of cellular senescence during the aging process:

Hambright WS, Duke VR, Goff AD, et al. Clinical validation of C12FDG as a marker associated with senescence and osteoarthritic phenotypes. Aging Cell. 2024;23(5):e14113. doi:10.1111/acel.14113

Di Micco R, Krizhanovsky V, Baker D, d'Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021;22(2):75-95. doi:10.1038/s41580-020-00314-w

Testing of baseline cellular senescence

Review results with healthcare provider

Incorporate changes to improve cellular senescence

Repeat testing annually to monitor changes in cellular senescence

Explore additional tests to assess aging status

reviewed with a healthcare provider in the context of your overall health before making any changes to your lifestyle, medications, or supplements. These results have been generated within a research context and should not be used for diagnostic purposes or for making decisions without medical oversight.

*Please note that these results should be

PHILIPPON RESEARCH INSTITUTE

lition to nore ems, ress is

rgery), es and gests that beople he chronic

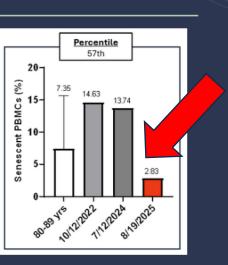
ng aging alized care

e of blood

i. Our

d age-

GING | PAGE 4


SUMMARY OF

SENESCENCE TESTING RESULTS

Date of Testing: 08/19/2025

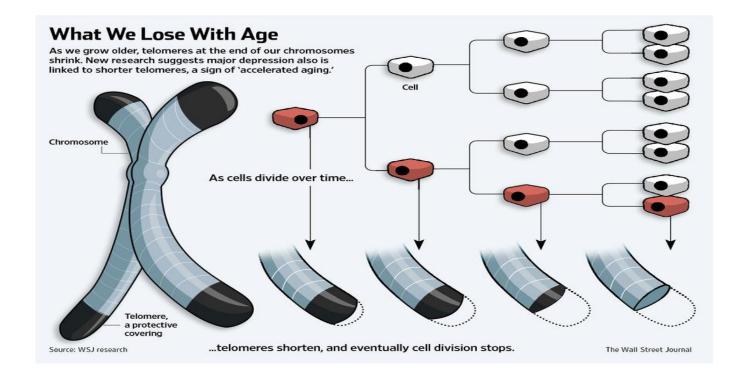
SPRI's methodology of detecting senescent (aging) cells in blood uses a technique called flow cytometry. We look at a specific type of blood cells called Peripheral Blood Mononuclear Cells (PBMCs), which are good indicators of aging or the senescent state in the blood.

We utilize a special stain that highlights senescent cells. When we analyze the stained PBMCs via flow cytometry, we see distinct groups of cells that glow brightly. This brightness occurs because of the fluorescent marker that we use, which only glows when it reacts with an enzyme that increases during cell aging (senescence). Cells with higher brightness have more of this enzyme, which suggests that they are in a later stage of aging.

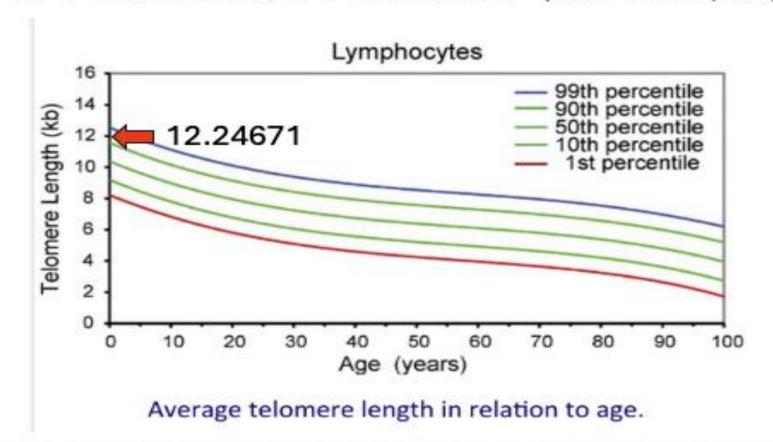
*Results are based upon your average data compared to the average collected data of individuals in the same age bracket

Please note that these results cannot be used for diagnostic purposes. Results obtained from SPRI's patent-pending technology based on flow cytometry technique may vary based upon optimization and validation methodologies used to identify and measure senescent PRMCs

HEALTHY AGING | PAGE 5


After fisetin treatment

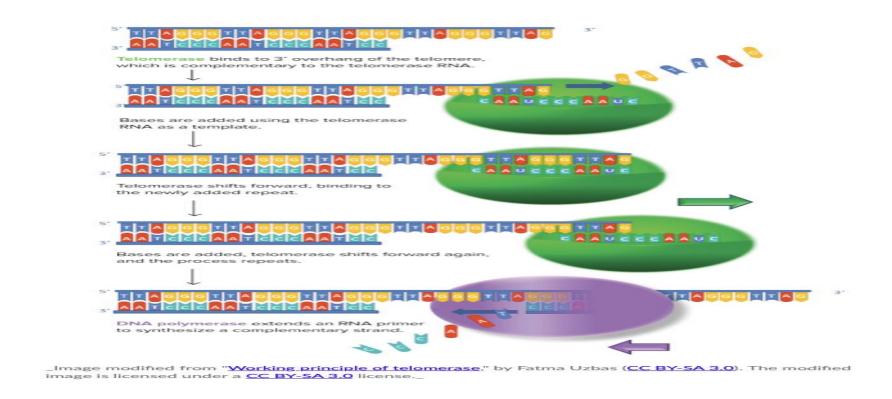
HEALTHY AGING | PAGE 6


Telomere Length

Telomere is a region of repetitive DNA sequences at the end of a chromosome. Each time a cell divides, the telomeres become slightly shorter.

Telomere length is a potential biomarker of aging, as it shortens with age and is linked to aging-related conditions.

LH-PBMC: 12.24671 ±0.896101 (Kilo base pair)


LAB: 12.24671 KB 99TH PERCENTILE FOR AGE GROUP DNA Telomere length Results: OUTSTANDING

These values are above 99th percentile for age group. 99% of people of the same age as shorter telomere and lower telomerase activity!

Telomerase

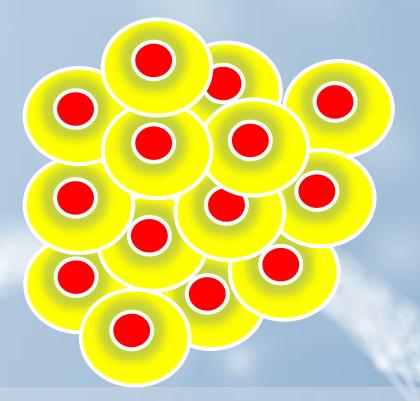
Telomerase is an enzyme that increases the length of telomeres, the protective caps at the end of chromosomes.

Longer telomeres are considered a strong indicator of high telomerase activity, as telomerase is the enzyme primarily responsible for lengthening telomeres,

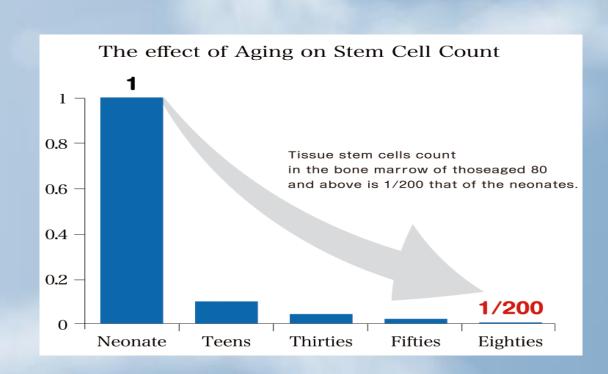
L.H. Plasma Telomerase by ELISA

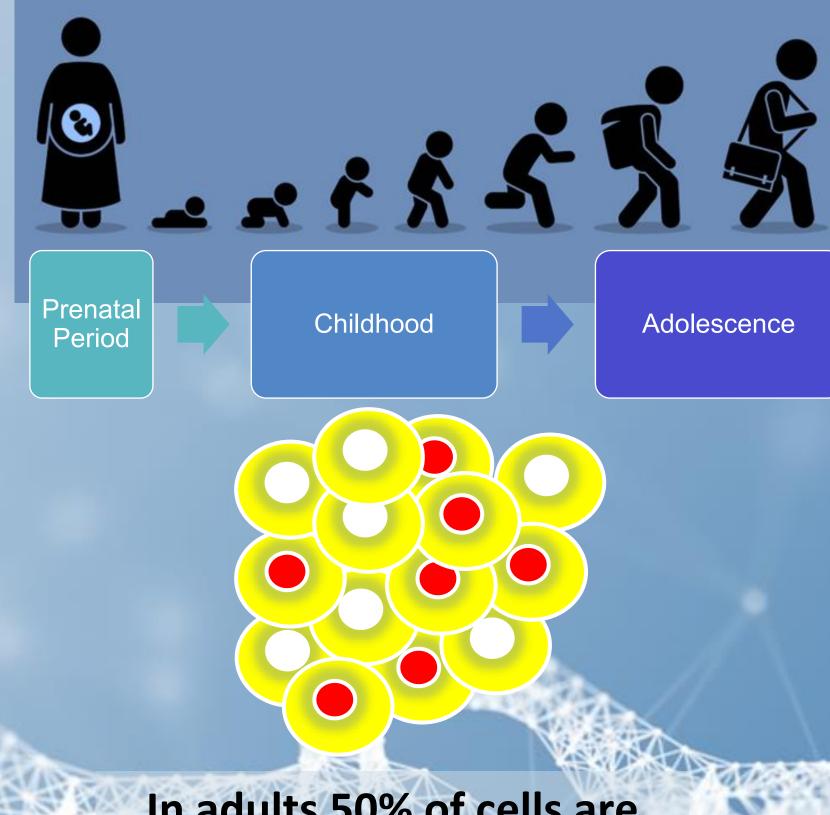
LH plasma Average

Telomerase: 2.15218ng/ml

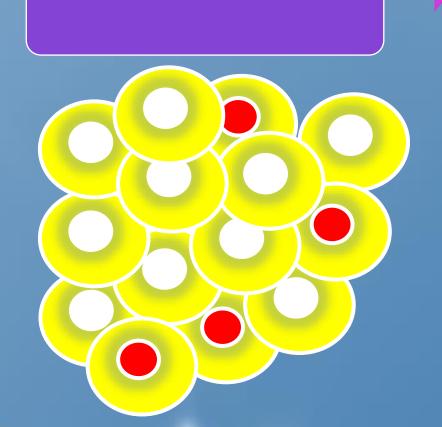

Kits provided Normal range:

Human Plasma:0.24-

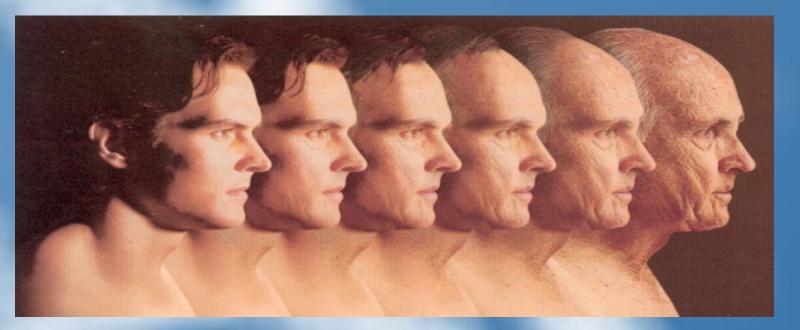

1.3ng/ml, Average 0.52 ng/ml.


Telomerase level is 4 times more elevated than normal level

Stem cells depletion/ exhaustion during the aging process


At birth 100% of cells are good with rejuvenation/ regenerative potential

In adults 50% of cells are good with rejuvenation/ regenerative potential



Adulthood

Aged-old

At older age, 75% of cells become senescent and lose rejuvenation potential

Kuhn H.G. et al. Neuroscience (1996); Molofsky A.V. et al. Nature (2006); De Barros S et al. Mol. Ther. (2013); Huard J et al. Nature Commun. 2012

20 years of work at the University of Pittsburgh

UTHealth & SPRI: 2015 - present

Isolation of musclederived stem cells (MDSCs)

> Late 1990s – early 2000s

Regenerative medicine with MDSCs

Mid 2000s

Isolation of human MDSCs & clinical trials with human MDSCs

2006-present

Origin of MDSCs, mechanisms of actions

2007-2009

Promoting angiogenesis for tissue repair 2011-2014

Blocking angiogenesis is required for the repair of non-vascularized tissues

2012-2014

Stem cell depletion during aging 2011-2015

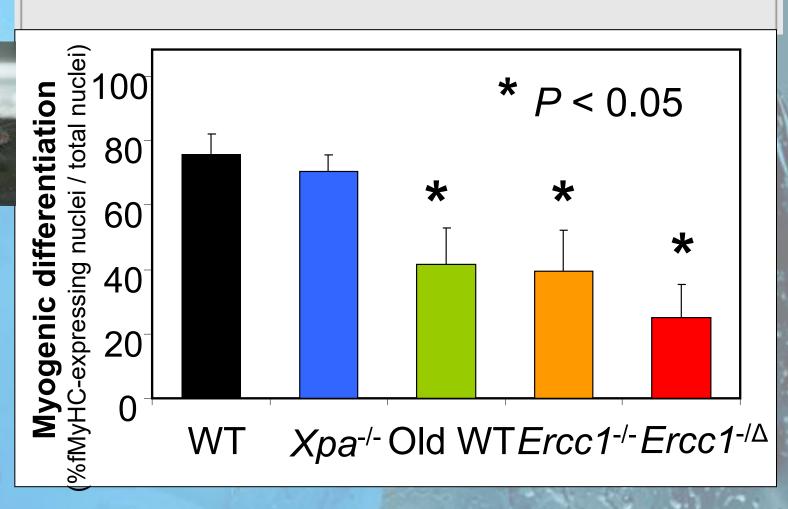
Parabiotic pairing between normal and old or diseased mice 2014-2017

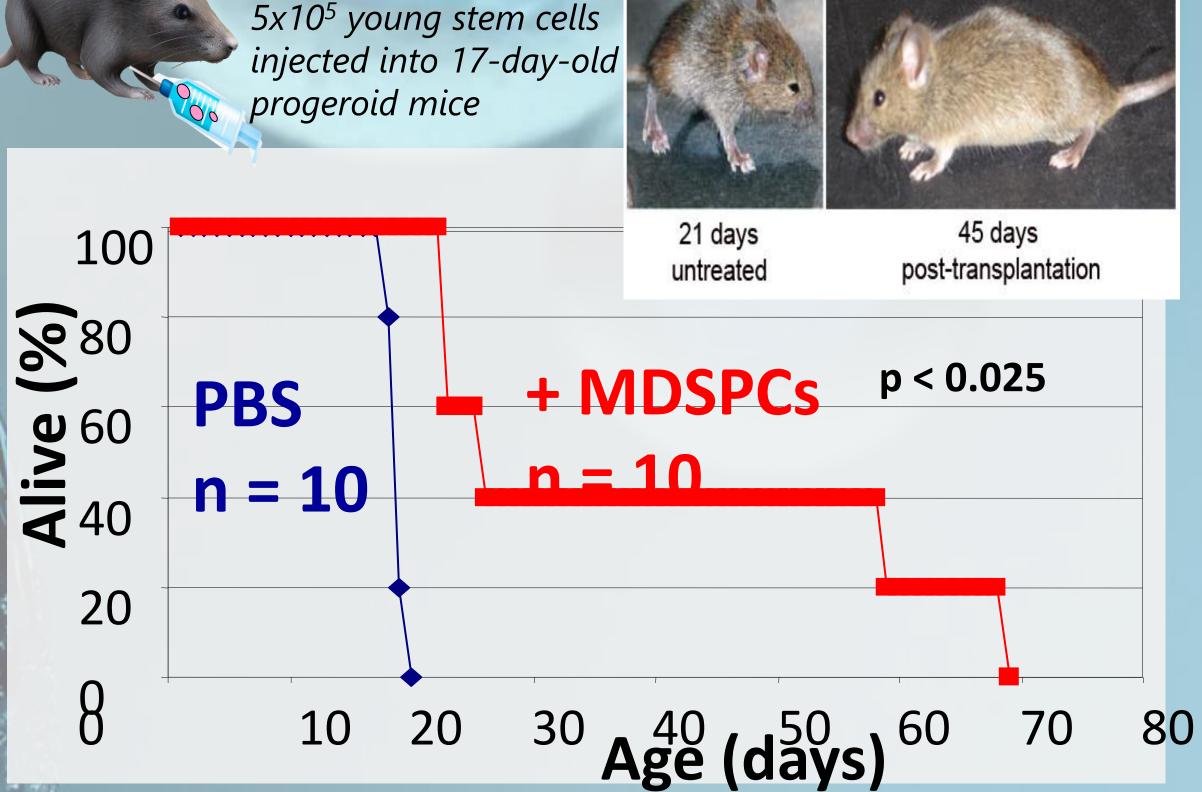
Pregnancy as a natural form of parabiotic pairing 2014-2018

Paul Robbins

Laura Niedernhofer

Progeria mice

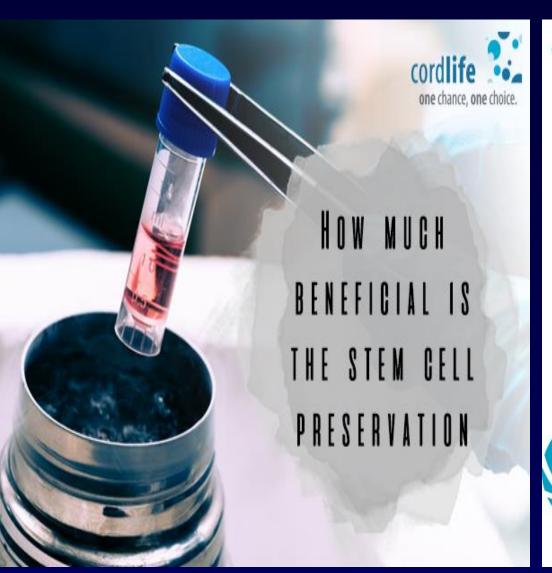

ERCC-/- mice


ERCC1-XPF is a <u>DNA repair endonuclease</u>

- Nucleotide excision repair
- •Interstrand crosslink repair
- Double-strand break repair

Deficiency in humans causes progeria

Cellular Proliferation (1500 cells/cm²) **Normalized Data** 100 90 Number of Cells 80 Normal MDSPCs 60 --- Ercc1-/∆ 50 Ercc1+/ **→** WT 30 20 Progeroid MDSPCs 10 60 Time intervals (hours)



Niedernhofer LJ et al. Nature (2006) 444; 1038-43

Lavasani M. et al. Nature Commun. 2012, Jan 3, 3;608 Song M et al. Stem Cell Res. & Therapy 4:33; 2013

The development of novel stem cell banking modalities: Limitations (stem cell expansion- cost- not FDA approved)

Hematopoietic stem cell injection for reconstitute the bone marrow of leukemia patients

What to Know About Hematopoietic **Stem Cell Transplantation**

Treats some blood cancers and immune disorders

A conditioning regimen is required (which can include radiation and/or chemotherapy medications)

Donors can be the recipient themselves or a donor with a matching HLA type may volunteer

> Infusion may take several hours

NO CELLULAR EXPANSION

ction of stem cells

Cryopreservation

mal Stem Cells: Functional echanisms, and Rejuvenation

d Ziaoting Liang^{1,4*}

al, School of Medicine, Tongji University, Shanghai, China ngji University School of Medicine, Shanghai, China ond Military Medical University, Shanghai, China ol of Life Sciences and Technology, Tongji University, Shanghai, China

lls capable of self-renewal and differentiation. There is s in various clinical situations, however, these cells gradually ncomitant increase in cellular dysfunction. Stem cell aging and

nber of population doublings before becoming senescent. This cultures must be expanded to obtain a sufficient number of cells knowledge of the phenotypic and functional characteristics of

Miloso, 1 Giovanni Tredici, 1 and Leda Dalprà 1,

Proliferation kinetics and differentiation potential of ex vivo expan Implications for their use in cell therapy

Monterras D et al. Direct isolation of satellite cells for skeletal m

Expansion of muscle cells in culture before engraftment r

Biomed Rep. 2017 Mar;6(3):300-306. doi: 10.3892/br.2017.845.

Cell culture density affects the stemness gene expression of adi

Cell Biochem Funct. 2016 Jan;34(1):16-24. doi: 10.1002/cbf.3158

Cell culture density affects the proliferation activity of human a

Kim DS1, Lee MW1, Ko YJ1, Chun YH2, Kim HJ2, Sung KW1, Koo HH1

Stem Cells International Volume 2016, Article ID 5656701, 12 page

The Effect of Culture on Human Bone Marrow Mesenchymal Ster

Angela Bentivegna, 1,2 Gaia Roversi, 1,3 Gabriele Riva, 1,2 Laura Paole

Kim DS¹, Lee MW¹, Lee TH², Sung KW¹, Koo HH^{1,3,4}, Yoo KH^{1,3,5}.

panel Andrea Banfiabc Anita Muraglia Beatrice Dozinab Maddalena Mastrogia como ac Ranieri Cancedda abc Rodolfo Quarto ab

senescent MSCs, molecular mechanisms underlying MSCs aging, and strategies to rejuvenate senescent MSCs, which can broaden their range of therapeutic applications.

During in STEM CELLS

irks of Aging!

Cytokines

Proteases

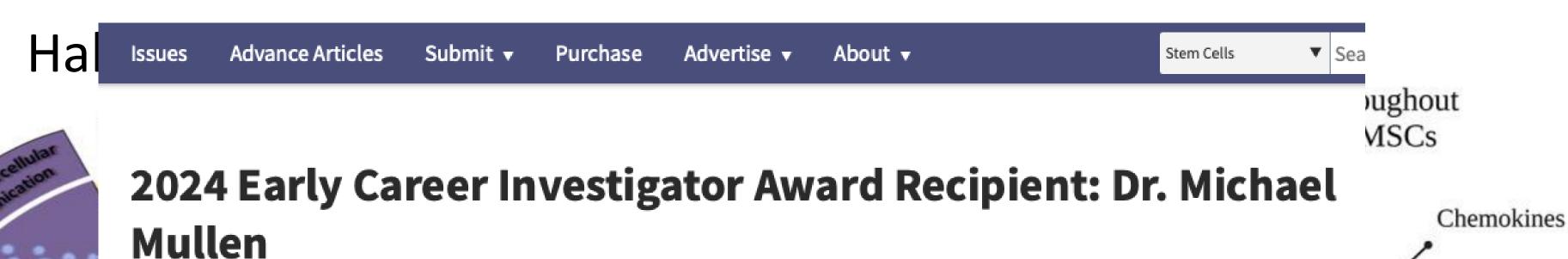
Growth

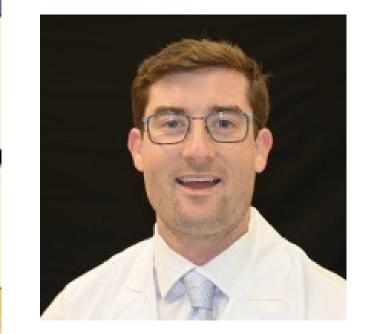
Factors

Enzymes

Quantity Cargo

Extracellular Vesicles

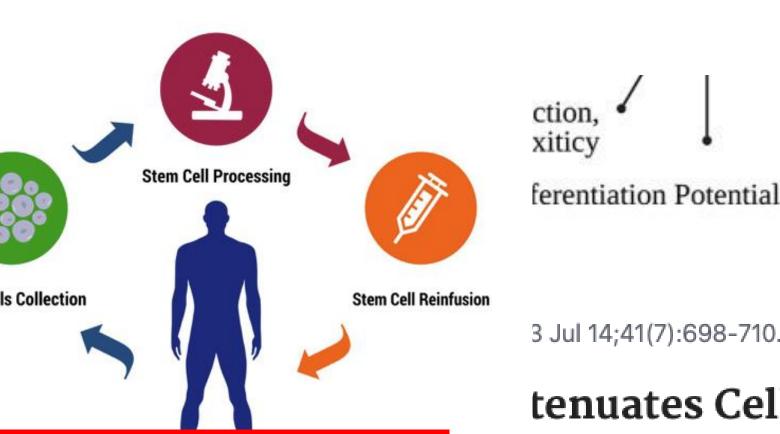

Size


Soluble

Fraction

Vesicular

Fraction



Aging C

Meet Dr. Michael Mullen – winner of the 2024 STEM CELLS Early Career Investigator Award. The Early Career Investigator Award is a prize granted annually to an early career scientist publishing a study with STEM CELLS that is deemed to be of global significance.

You can read the winning paper here: Fisetin Attenuates Cellular Senescence Accumulation <u>During Culture Expansion of Human Adipose-Derived Stem Cells</u>

3 Jul 14;41(7):698-710. doi: 10.1093/stmcls/sxad036.

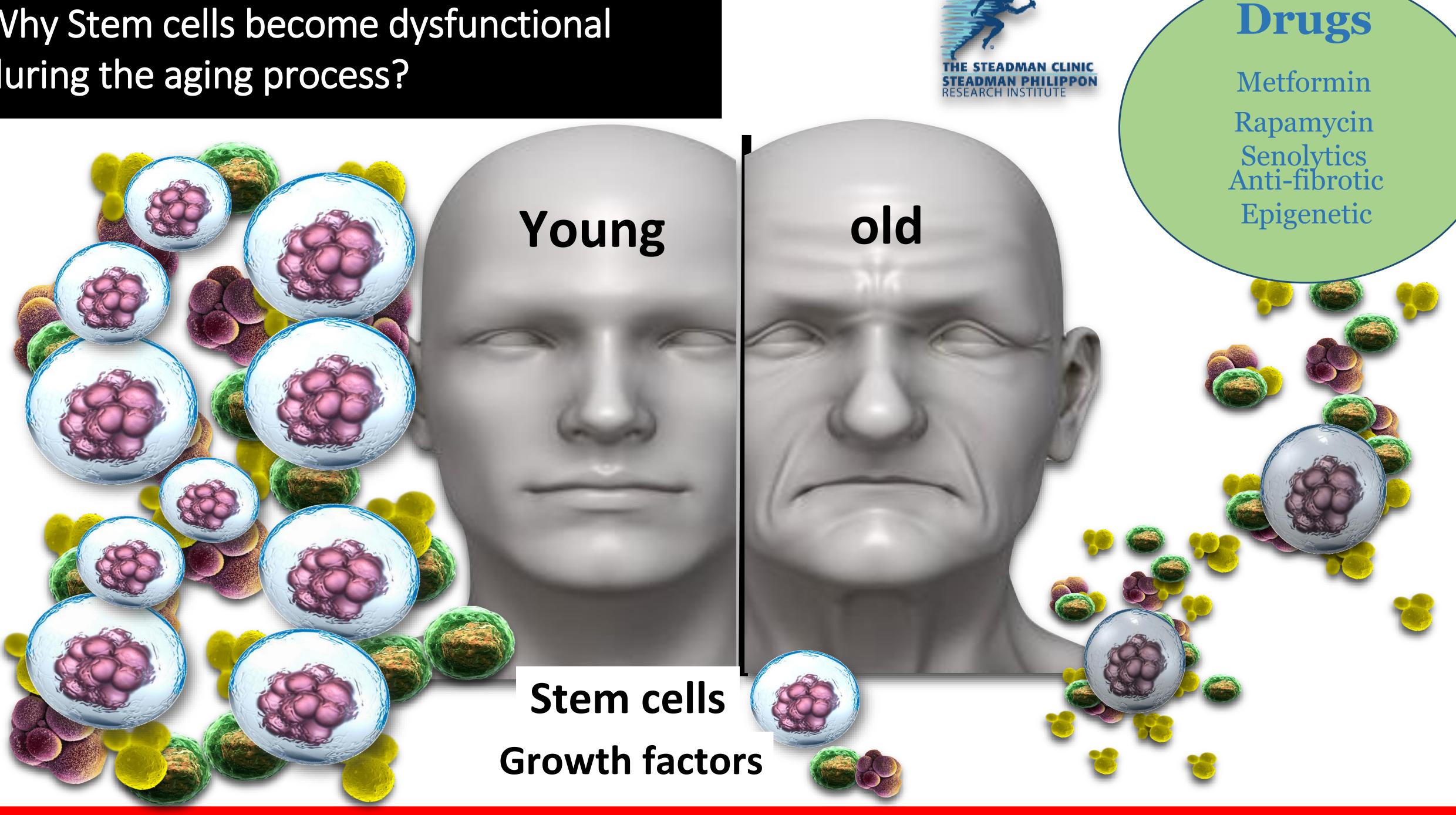
tenuates Cellular Senescence Accumulation lture Expansion of Human Adiposeeu stem Cells

ıllen ¹, Anna Laura Nelson ¹, Alexander Goff ¹, Jake Billings ¹, Heidi Kloser ¹, ard 1, John Mitchell 1, William Sealy Hambright 1, Sudheer Ravuri 1, Johnny Huard 1

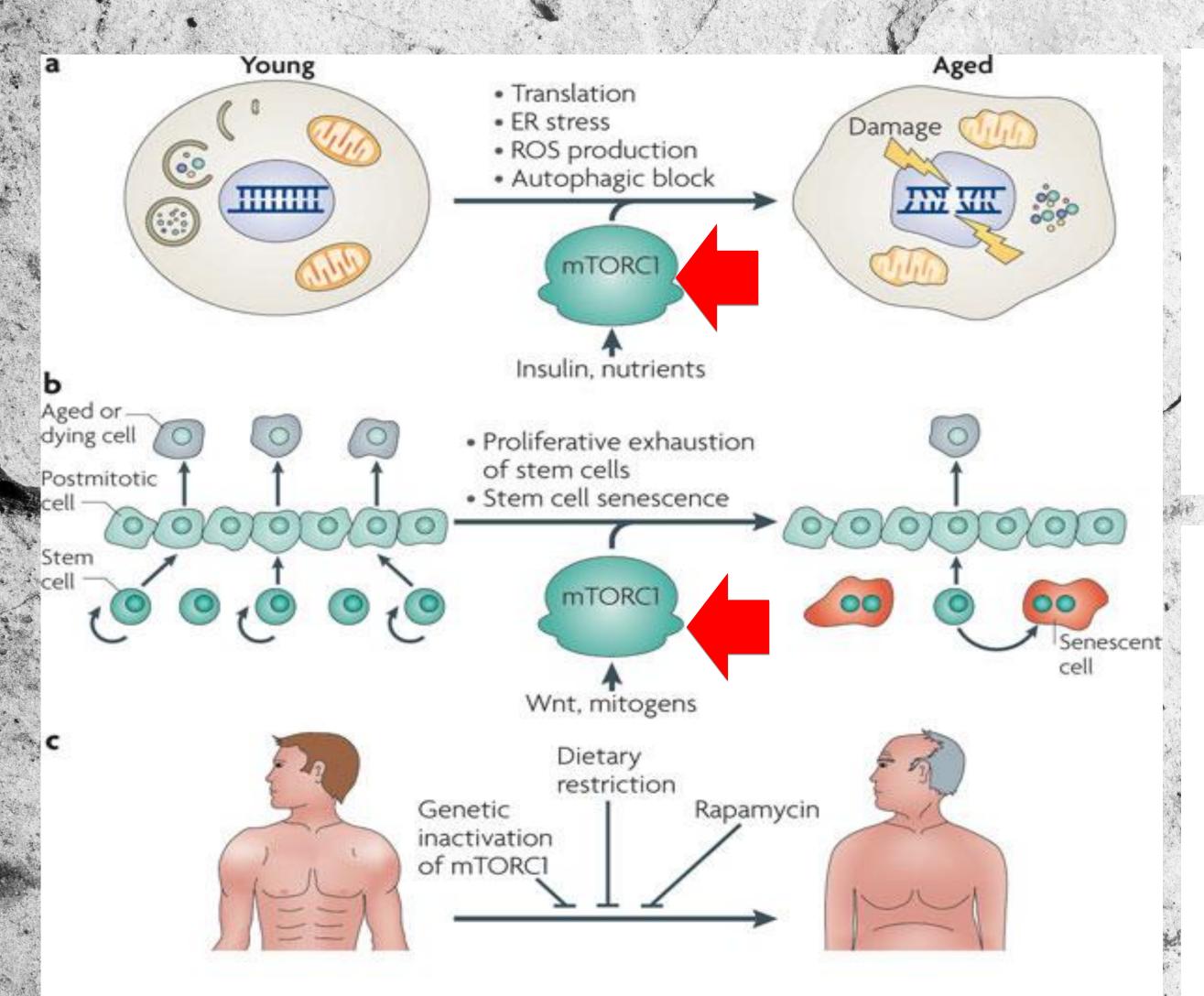
Revised: 14 November 2022 Accepted: 2 December 2022 DOI: 10.1111/acel.13759

REVIEW ARTICLE

Cellular expansion of MSCs: Shifting the regenerative


William S. Hambright | Johnny Huard | Martin Chelsea S. Bahney^{1,3}

Stem Cells Collection


Treat your patients with senolytics (fisetin, quercetin...) Before

harvesting stem cells!

Why Stem cells become dysfunctional during the aging process?

Why Stem Cells get exhausted/depleted with Aging

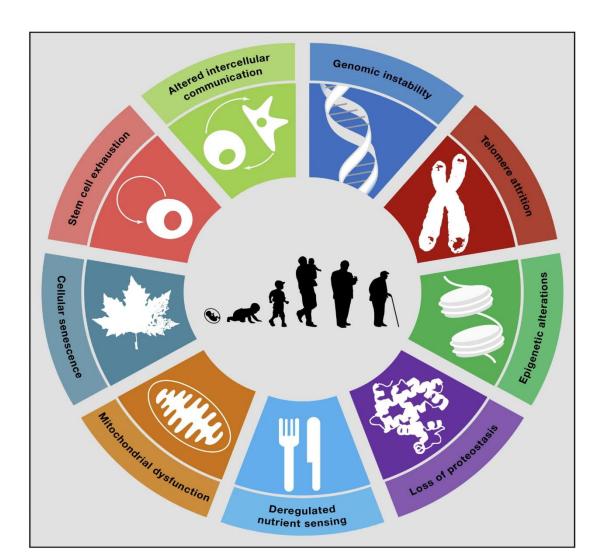
> J Orthop Res. 2017 Jul;35(7):1375-1382. doi: 10.1002/jor.23409. Epub 2016 Sep 22.

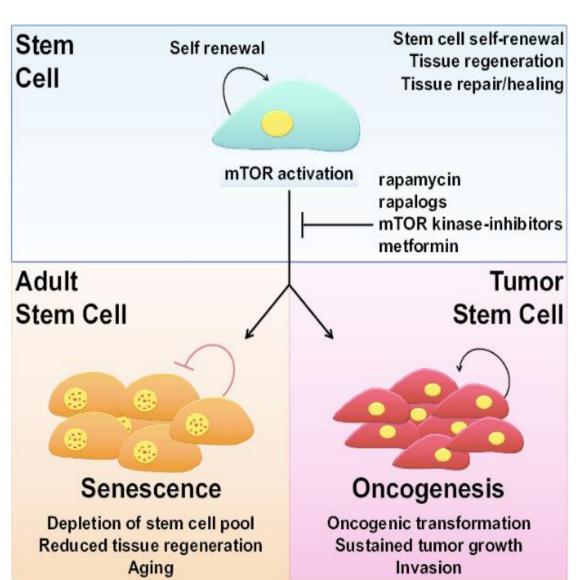
mTOR signaling plays a critical role in the defects observed in muscle-derived stem/progenitor cells isolated from a murine model of accelerated aging

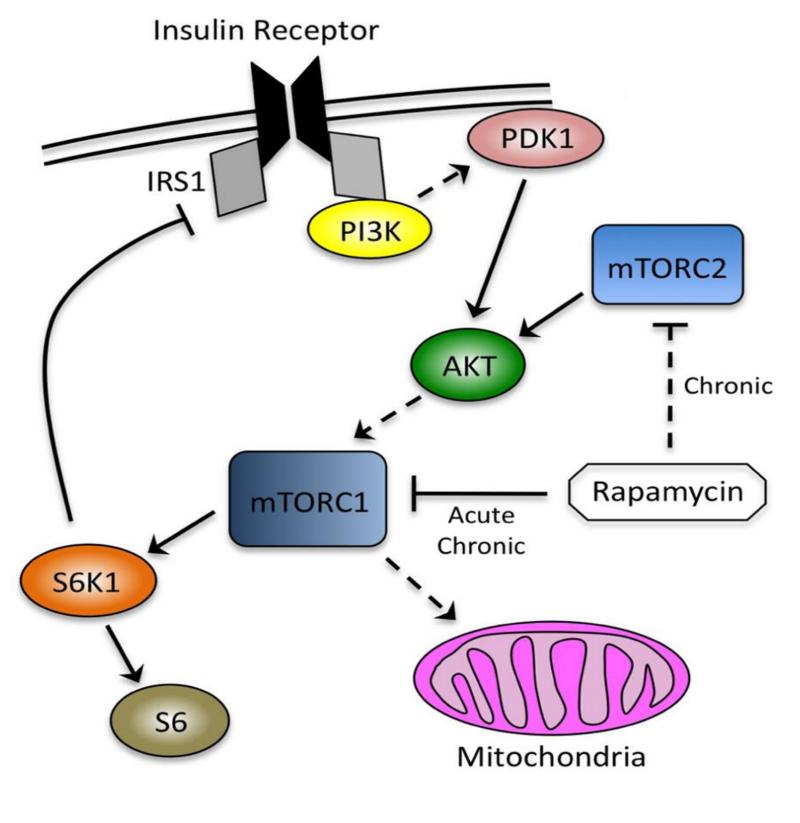
Koji Takayama ^{1 2 3}, Yohei Kawakami ^{1 2 3}, Mitra Lavasani ^{1 2}, Xiaodong Mu ^{1 2 4 5}, James H Cummins ^{1 2 4}, Takashi Yurube ¹, Ryosuke Kuroda ³, Masahiro Kurosaka ³, Freddie H Fu ¹, Paul D Robbins ⁶, Laura J Niedernhofer ⁶, Johnny Huard ^{1 2 4 5}

> Stem Cell Res Ther. 2013 Mar 25;4(2):33. doi: 10.1186/scrt183.

Muscle-derived stem/progenitor cell dysfunction in Zmpste24-deficient progeroid mice limits muscle regeneration


Minjung Song, Mitra Lavasani, Seth D Thompson, Aiping Lu, Bahar Ahani, Johnny Huard


PMID: 23531345 PMCID: PMC3706820 DOI: 10.1186/scrt183


Free PMC article

Nature Reviews | Molecular Cell Biology

mTOR inhibitors (Rapamycin & Metformin) rescue stem cells from exhaustion/depletion

Editorial > Aging (Albany NY). 2020 Aug 4;12(15):15184-15185. doi: 10.18632/aging.103816. Epub 2020 Aug 4.

Rapamycin for aging stem cells

William S Hambright ¹, Marc J Philippon ^{1 2}, Johnny Huard ^{1 2}

Affiliations + expand

PMID: 32756013 PMCID: PMC7467370 DOI: 10.18632/aging.103816

Free PMC article

> Mol Ther Methods Clin Dev. 2019 May 30;14:64-76. doi: 10.1016/j.omtm.2019.05.011. eCollection 2019 Sep 13.

Rapamycin Rescues Age-Related Changes in Muscle-Derived Stem/Progenitor Cells from Progeroid Mice

Yohei Kawakami ¹ ², William S Hambright ³ ⁴, Koji Takayama ¹ ², Xiaodong Mu ¹ ³ ⁴, Aiping Lu ¹ ³ ⁴, James H Cummins ¹, Tomoyuki Matsumoto ², Takashi Yurube ², Ryosuke Kuroda ², Masahiro Kurosaka ², Freddie H Fu ¹, Paul D Robbins ⁵, Laura J Niedernhofer ⁵, Johnny Huard ⁴

Affiliations + expand

PMID: 31312666 PMCID: PMC6610712 DOI: 10.1016/j.omtm.2019.05.011

Free PMC article

Aging Cell ANATOMICAL SOCIETY

Review > Cell Metab. 2020 Jul 7;32(1):15-30. doi: 10.1016/j.cmet.2020.04.001. Epub 2020 Apr 24.

Benefits of Metformin in Attenuating the Hallmarks of Aging

Ameya S Kulkarni ¹, Sriram Gubbi ², Nir Barzilai ³

Affiliations + expand

PMID: 32333835 PMCID: PMC7347426 DOI: 10.1016/j.cmet.2020.04.001

Free PMC article

Aging Cell. 2018 Aug; 17(4): e12765.

Published online 2018 Apr 16. doi: 10.1111/acel.12765

Metformin alleviates human cellular aging by upregulating the endoplasmic reticulum glutathione peroxidase 7

PMID: <u>29659168</u>

Jingqi Fang, ^{1,2,†} Jiping Yang, ^{1,2,†} Xun Wu, ^{1,2,†} Gangming Zhang, ^{1,2} Tao Li, ^{1,2} Xi'e Wang, ¹ Hong Zhang, ^{1,2} Chih-chen Wang, ^{1,2} Guang-Hui Liu, ^{1,2,3} and Lei Wang ^{1,2}

► Author information ► Article notes ► Copyright and License information PMC Disclaimer

Rapamycin (m-TOR inhibitor) Treatment to Delay Aging

- Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. Elife. 2016 Aug 23;5. pii: e16351. Bitto A1 et
- Rapamycin fed late in life extends lifespan in genetically heterogeneous Mice.

Nature. 2009 Jul 16;460(7253):392-5. Harrison DE et al

n the 1990s, pharmacologist Dave Sharp of the University of Texas's Barshop Institute for Longevity and Aging Studies in San Antonio was studying mice with pituitary dwarfism—a condition in which the pituitary gland fails to make enough growth hormone for normal development. The puzzle, Sharp explains, was that research had shown that these hormone-deficient dwarf mice lived longer than normal mice. "I wondered, why is being small connected with longer life?" he says.

Metformin decelerates aging clock in male monkeys

Yuanhan Yang 1,10,23 · Xiaoyong Lu 2,3,10,23 · Ning Liu 7,8,23 · ... · Jing Qu $\stackrel{\wedge}{\sim}$ 1,4,5,10,13,22 $\stackrel{\boxtimes}{\boxtimes}$ · Weigi Zhang $\stackrel{\wedge}{\sim}$ 2,3,4,5,10,22 $\stackrel{\boxtimes}{\boxtimes}$ · Guang-Hui Liu [○] 1,4,5,6,10,22,25

... Show more

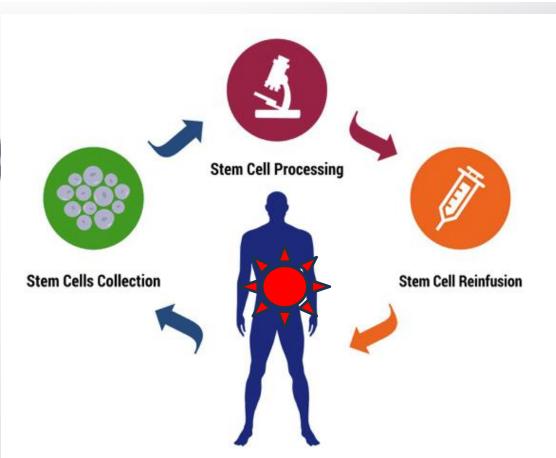
Affiliations & Notes ✓ Article Info ✓

Get Access

55 Cite

Contract Contract

Highlights


Metformin prevents brain atrophy, elevating cognitive function in aged male primates

Metformin slows the pace of aging across diverse male primate tissues

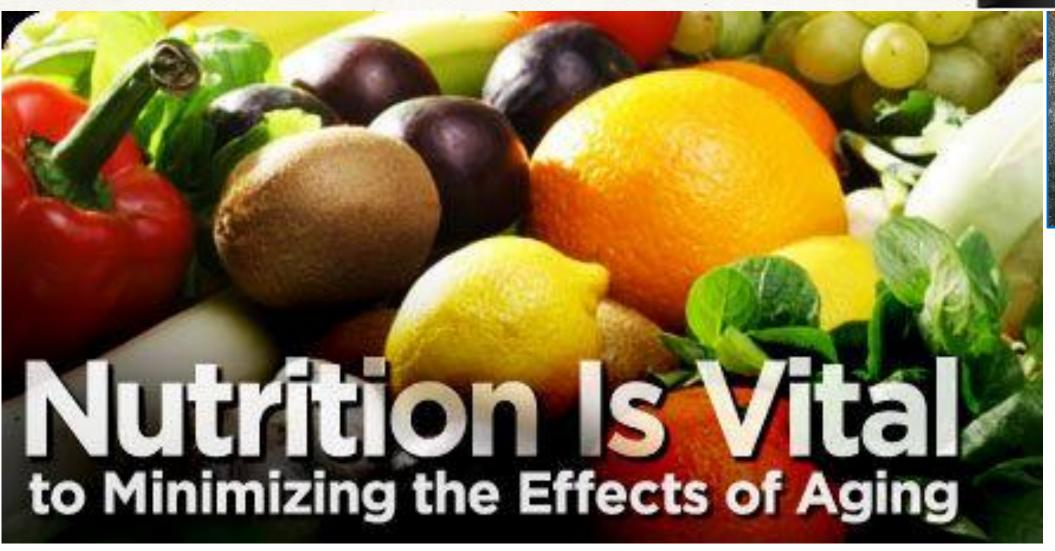
Metformin counterparts neuronal aging, delivering geroprotection via Nrf2 in male primates

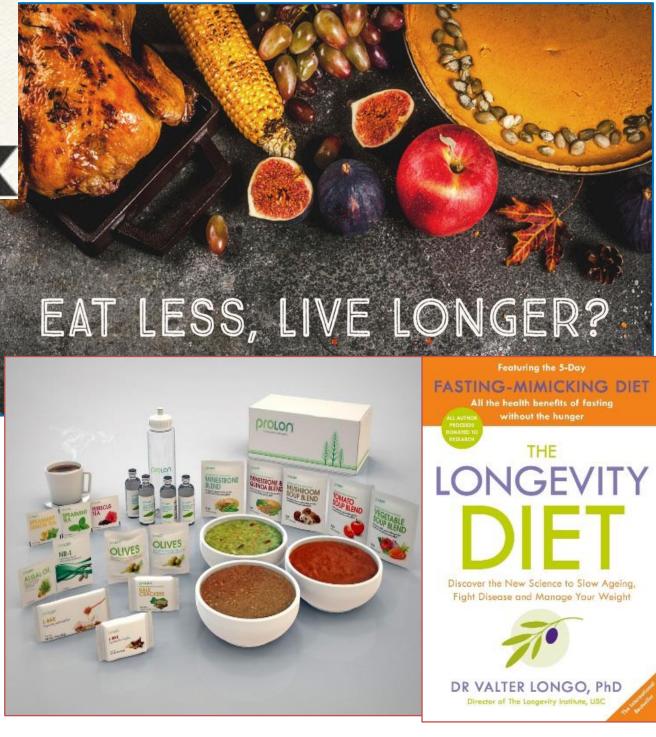
Summary

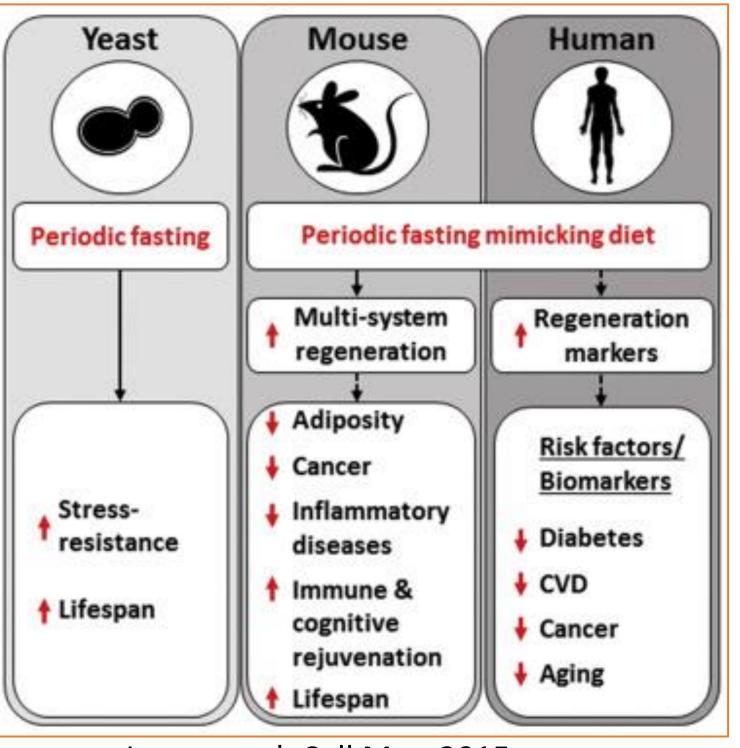
In a rigorous 40-month study, we evaluated the geroprotective effects of metformin on adult male cynomolgus monkeys, addressing a gap in primate aging research. The study encompassed a comprehensive suite of physiological, imaging, histological, and molecular evaluations, substantiating metformin's influence on delaying age-related phenotypes at the organismal level. Specifically, we leveraged pan-tissue transcriptomics, DNA methylomics, plasma proteomics, and metabolomics to develop innovative monkey aging clocks and applied these to gauge metformin's effects on aging. The results highlighted a significant slowing of aging indicators, notably a roughly 6-year regression in brain aging. Metformin effects on primate neurons were partially mediated by the activation of Nrf2, a transcription factor with anti-oxidative capabilities. Our research pioneers the systemic reduction of multi-dimensional biological age in primates through metformir paving the way for advancing pharmaceutical strategies against human aging

FDA-approved drug **Metformin (M-Tor)** to delay multiple age-related conditions

A diabetes medication that costs 6 cents a pill could be a key to living longer


Treat your patients with M-TOR inhibitors Metformin, Rapamycin Before harvesting stem cells!


Diet


Caloric Restriction
Intermittent Fasting
Ketogenic Diet

Healthy Eating is Healthy Living

Eat right and stay healthy to ensure your body is getting enough of the following nutrients:

Increased Healthspan & Lifespan in Several Species

mTOR

mTOR inhibitors (diet) rescue your stem cells and make you live longer and healthier...

Longo et al. Cell Met. 2015

Diet

Caloric Restriction
Intermittent Fasting
Mediterranean diet

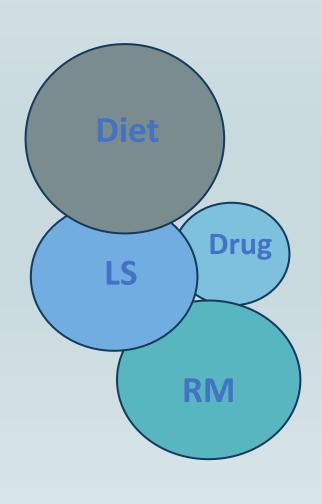
A combinatorial approach to provide <u>Personalized</u> <u>Healthy-Aging Therapy</u>

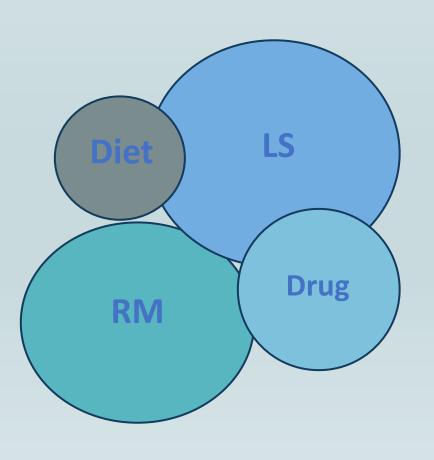
Lifestyle(LS)

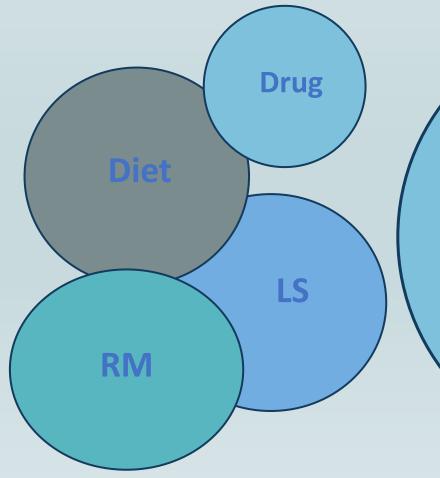
Aerobic Exercise

Angiogenesis

Sleep

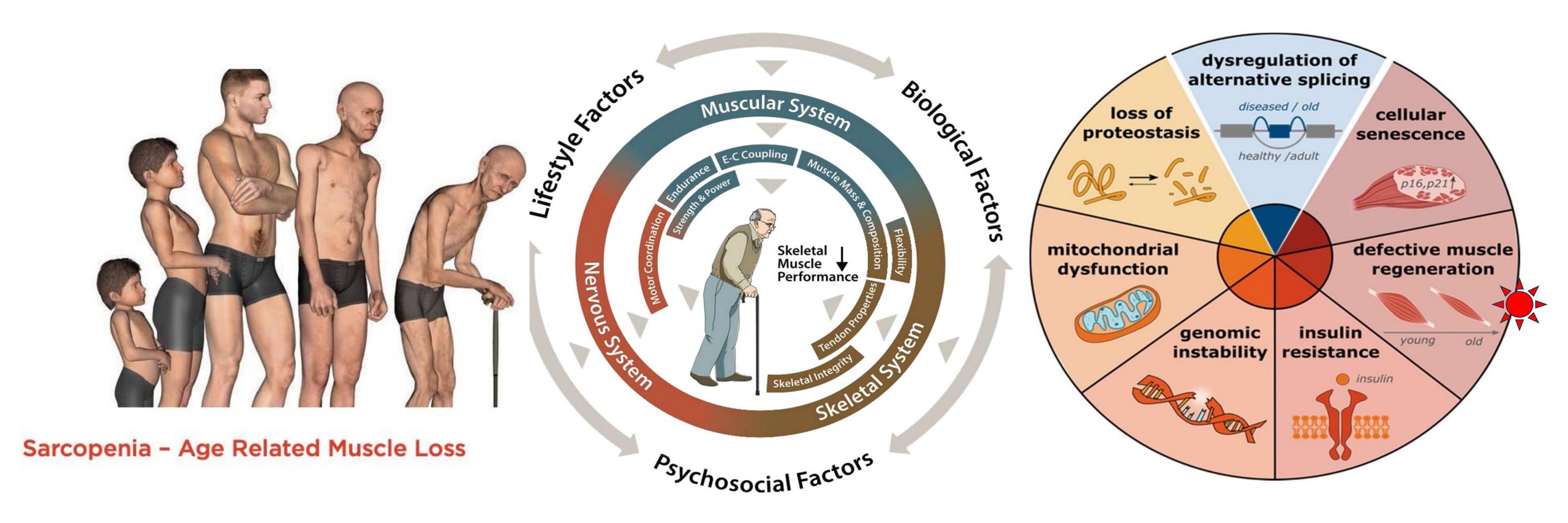

It is estimated that about 25 percent of the variation in human life span is determined by **genetics**, but which genes, and how they contribute to longevity, are not well understood


Regenerative
Medicine (RM)


Stem Cell Banking

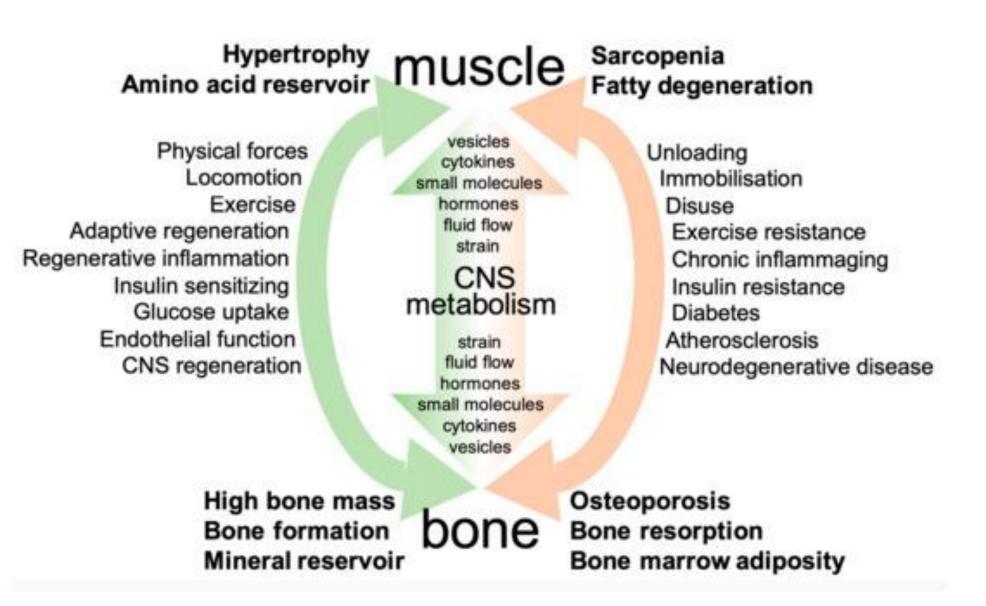
Stem Cell Therapy

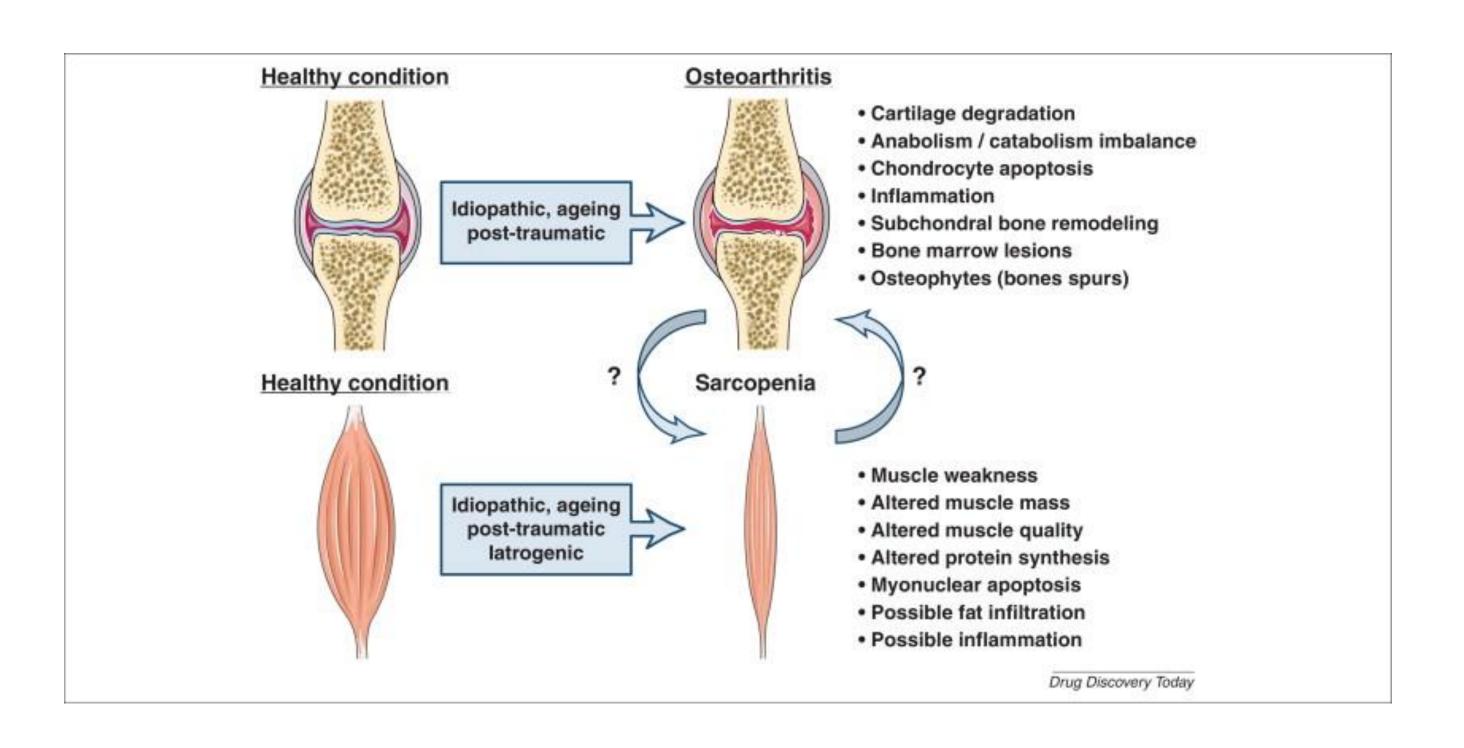
PRP
Exosomes



Drugs
Supplements

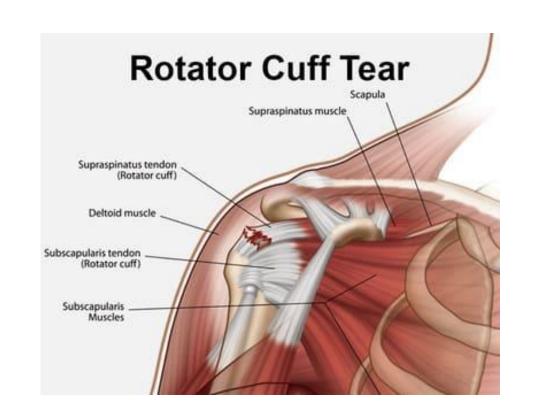
Metformin
Rapamycin
Senolytics
Losartan


Skeletal muscle health significantly declines with age, a process known as sarcopenia, characterized by a loss of skeletal muscle mass, strength, and physical function


Maintaining skeletal muscle health through exercise is crucial for healthy aging and preventing disability

Skeletal muscle and bone/Joint Health

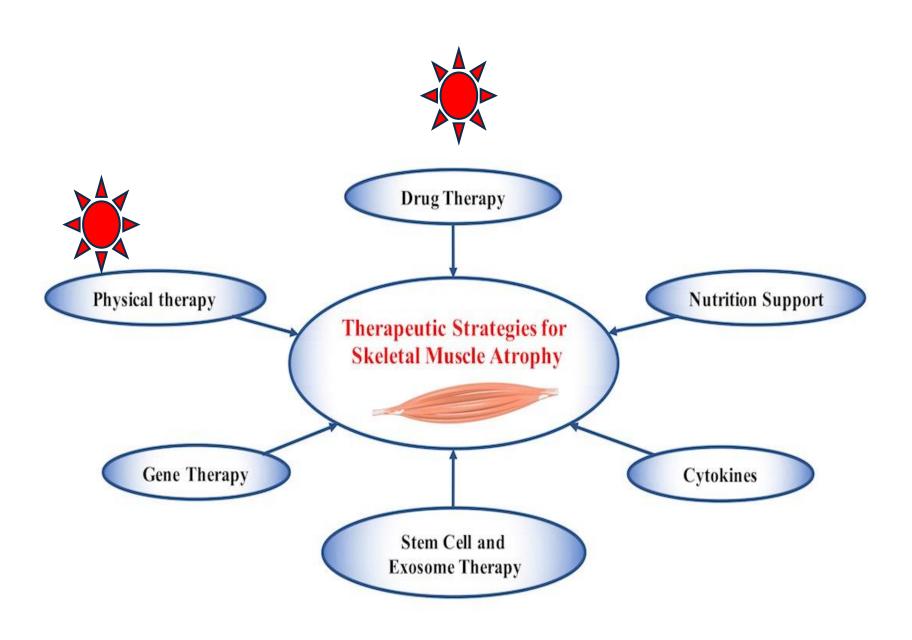
Skeletal muscles and bones are interconnected tissues, with muscles exerting mechanical forces on bones to allow movement and also impacting bone health through endocrine activity.


Cartilage, a connective tissue in joints, is also affected by skeletal muscle activity and can contribute to joint health.

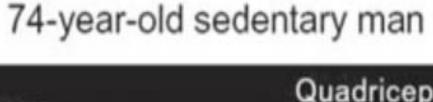
Developing Therapeutic for Osteoporosis/Osteoarthritis through improving skeletal muscle health!

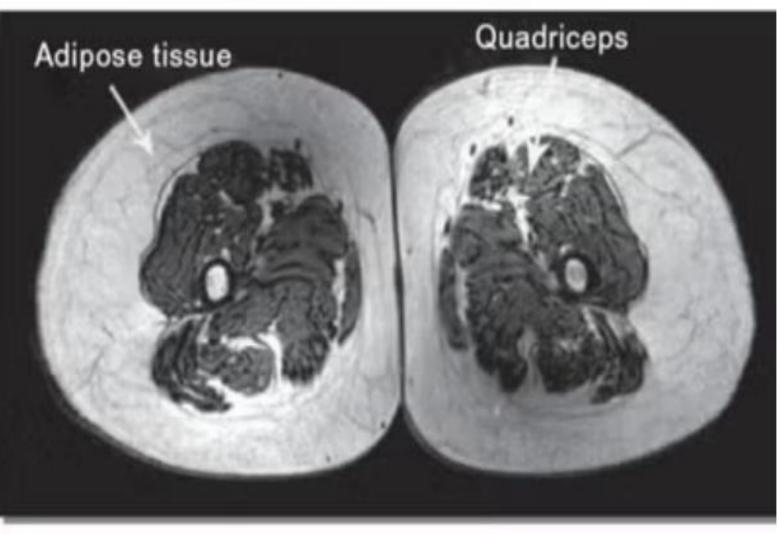
Skeletal muscle health, particularly muscle strength and muscle mass, is a significant predictor of outcomes in orthopaedic surgeries.

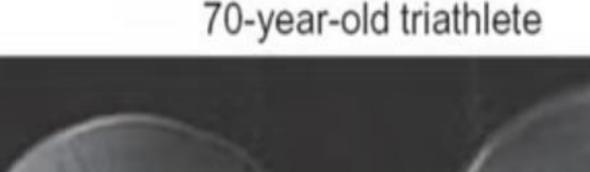
Specifically, sarcopenia, the loss of skeletal muscle mass, is linked to poorer outcomes, including prolonged recovery and increased complications

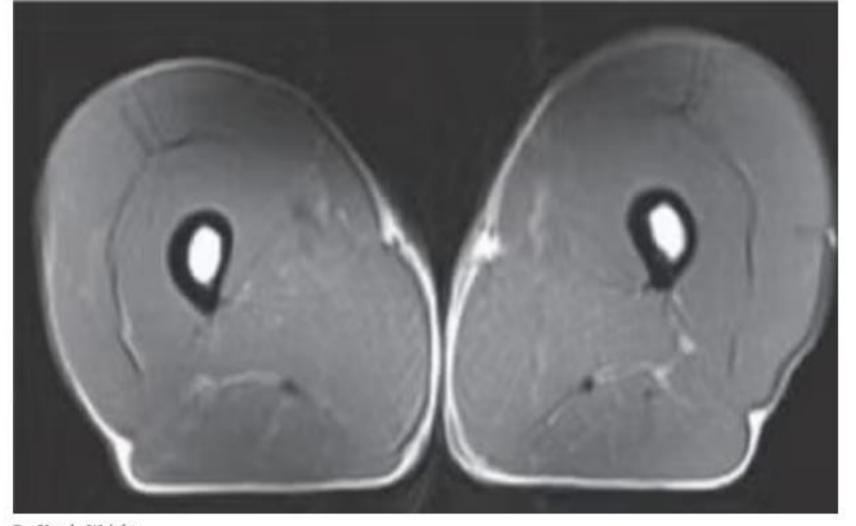

While several factors influence the success of rotator cuff surgery, muscle health, particularly strength and absence of fatty infiltration, is considered a key predictor of outcomes

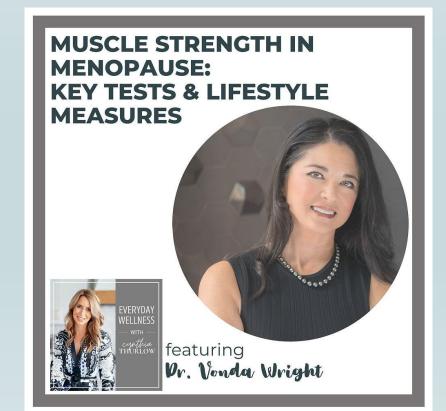
Skeletal muscle health, particularly before knee replacement surgery, is a strong predictor of surgical outcomes


Skeletal muscle health is a significant predictor of anterior cruciate ligament (ACL) reconstruction outcomes. Quadriceps strength, in particular, is a strong indicator of patient-reported function and returnto-sport success.




Maybe it is time to look at exercise and drugs that improve skeletal muscle. Pre-habilitation Program to improve skeletal muscle health BEFORE orthopaedic surgery


Chronic Exercise Preserves Lean Muscle Mass in Masters Athletes



Dr. Vonda Wright

Wroblewski AP, Amati F, Smiley MA, Goodpaster B, Wright V. Chronic exercise preserves lean muscle mass in masters athletes. Phys Sportsmed. 2011 Sep;39(3):172-8. doi: 10.3810/psm.2011.09.1933. PMID: 22030953.

Pre-habilitation program to preserves lean muscle mass and optimize surgical outcome

Consideration: To date, therapeutic OA clinical trials have largely been unsuccessful

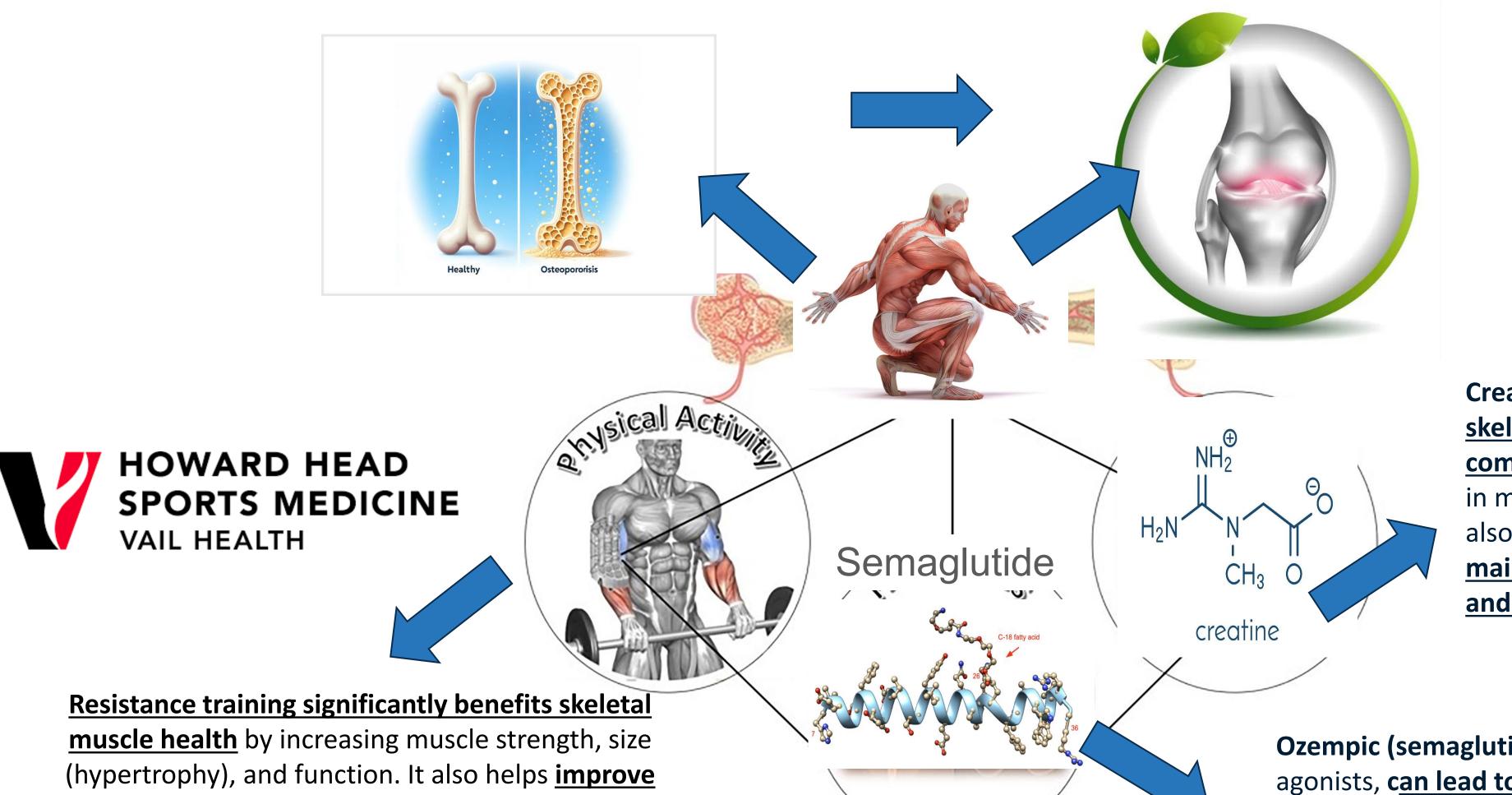
Currently 4,323 interventional OA clinical trials listed on clinicaltrials.gov

- 2,882 have been completed
- 680 are currently recruiting
- 138 trials funded by NIH
- 98 trials funded by other agencies, like DoD

Many trials focus on **symptomatic relief** rather than slowing or reversing disease progression

Few treatments have proven more effective than common analgesics/NSAIDs

No disease-modifying osteoarthritis drugs (DMOADs) have demonstrated clinical trial efficacy or achieved FDA approval


Many clinical trials for osteoarthritis (OA) have focused on drugs that target the joint directly, particularly for pain management. These include treatments like intra-articular injections of corticosteroids and hyaluronic acid, as well as NSAIDs targeting joint inflammation

Most clinical trials have been performed to identify drugs to delay osteoarthritis with NO SUCCESS. All of these drugs target the joint! Maybe it is time to look at drugs that target other musculoskeletal tissues

Improving Skeletal Muscle Health to Improve Bone & Joint Health

V

VAIL HEALTH

Creatine supplementation can be beneficial for skeletal muscle health, particularly when combined with resistance training, and may help in muscle growth, strength, and recovery. It can also be beneficial for older adults, helping to maintain muscle mass and function as they age and reduce sarcopenia

Resistance training significantly benefits skeletal muscle health by increasing muscle strength, size (hypertrophy), and function. It also helps improve bone density and reduces the risk of osteoporosis, falls, and fractures. Additionally, resistance training can improve metabolic health and assist in weight management.

Ozempic (semaglutide), which are GLP-1 receptor agonists, can lead to a reduction in muscle mass, particularly during rapid weight loss. While they effectively reduce fat, they can also cause a decline in lean body mass, including muscle, potentially leading to sarcopenia (loss of muscle mass), strength, and function.

Ozempic (semaglutide), while effective for weight loss and managing type 2 diabetes, <u>can lead to muscle loss</u> as a side effect, particularly with rapid weight reduction. This is because Ozempic can reduce appetite, leading to decreased calorie intake and potential <u>loss of muscle mass</u> alongside fat. While not directly causing muscle loss, the rapid weight loss it induces can contribute to this side effect

Comment

https://doi.org/10.1038/s41574-025-01160-6

Check for updates


Balancing weight and muscle loss in GLP1 receptor agonist therapy

Fabian Sanchis-Gomar, Ian J. Neeland & Carl J. Lavie

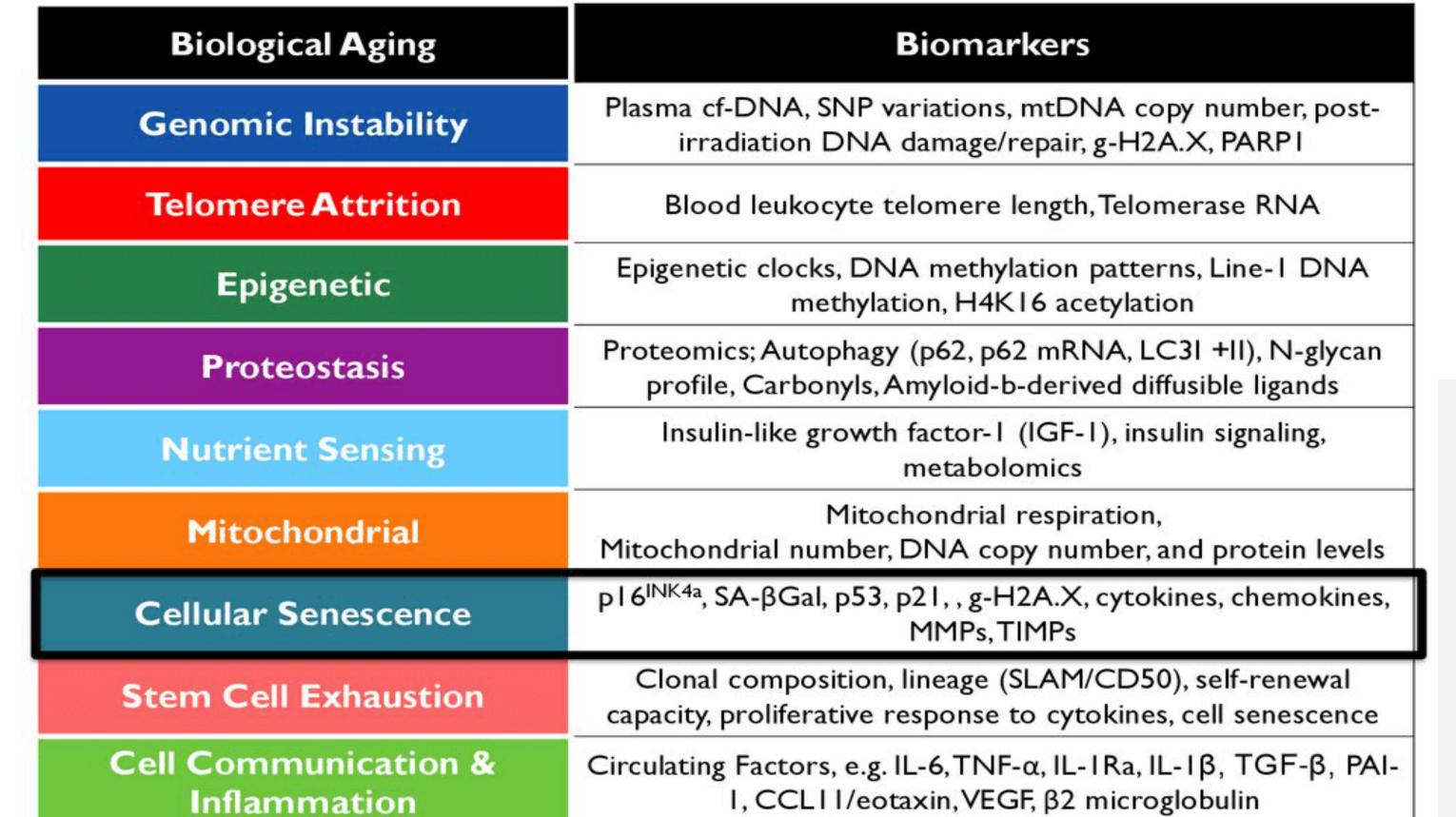
Rapid weight loss with GLP1 receptor agonists can come at the cost of skeletal muscle, potentially undermining metabolic and functional outcomes. This Comment highlights emerging evidence and advocates for clinical strategies that prioritize muscle preservation to ensure the long-term success and safety of pharmacological weight management.

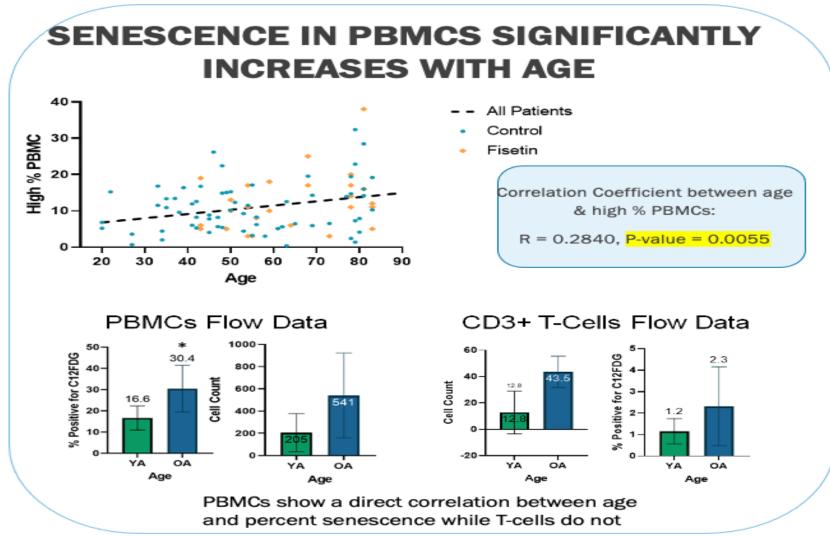
use⁴. However, without muscle-specific tissue analysis, such inferences remain speculative. In fact, preclinical evidence suggests potential protective effects of GLP1 receptor agonists on muscle, including studies in rodent models demonstrating reduced muscle atrophy by modulating both anabolic and proteolytic pathways^{5,6}. These findings emphasize the need for mechanistic studies in human skeletal muscle to clarify these effects.

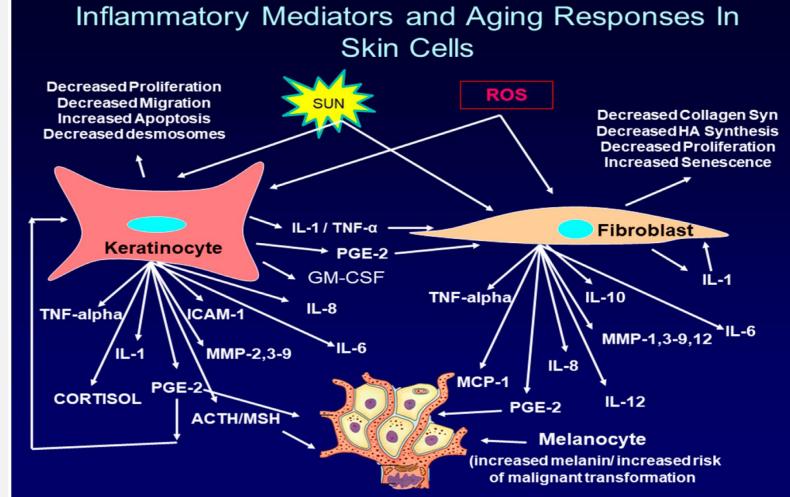
Targeting the myostatin–activin A pathway is a promising muscle preservation strategy. These ligands suppress muscle growth via activin type II receptors (ActRII). Inhibition of ActRII has been shown to induce hypertrophy and reduce adipose tissue mass in both animal models and preliminary human studies. A 2024 study⁷ combined semaglutide with


Ozempic prescriptions for non-diabetic individuals increasing by 700% from 2019 to 2023.

One-third of Ozempic prescriptions today go to non-diabetic individuals


Reducing skeletal muscle mass will predispose to osteoporosis and osteoarthritis!


Adding exercise and creatine to Ozempic may help preserve muscle mass, which is a key component of a safer and more effective weight loss journey


CAN WE MEASURE BIOMARKERS OF AGING YES


Personalized medicine for Healthy Aging!

ReCODE Tests	
	Target Values
GENETICS	
АроЕ	Negative for ApoE4
BLOOD TESTS	
Inflamation vs cellular protect	ion
CRP	< .9 mg/dL
Homocysteine	< 7 mcmol/L
Vitamin B6	60-100 mcg/L
Vitamin B12	500-1500 pg/ml
Folate	10-25 ng/ml
Vitamin C	1.3-2.5 mg/dL
Vitamin D3	50-80 ng/ml
Vitamin E	12-20 mcg/ml
Omega-6 to 3 ratio	.5-3.0
A/G ratio (albumin:globulin)	>=1.8
Albumin	>4.5 g/dL
Fasting insulin	<=4.5 microIU/ml
Fasting glucose	70-90 mg/dL
HgbA1c	< 5.6%
Body Mass Index	18-25

LDL-p	700-1000 nmol/L	Estradiol : progesterone ratio	10-100
sdLDL	< 20 mg/dL	Pregnenolone	50-100 ng/dL
oxidized LDL	< 60 U/I	Cortisol	10-18 mcg/dL
		DHEA sulfate (f)	350-430 mcg/dL
Cholesterol	> 150 mg/dL	Total testosterone	500-1000 ng/dL
HDL	> 50 mg/dL		
Triglycerides	< 150 mg/dL	Free testosterone	6.5-15 ng/dL
Glutathione	5.0-5.5 micromolar	Free T3	3.2-4.2 pg/ml
Serum thiamine	20-30 nmol/l	Free T4	1.3-1.8 ng/dL
RBC thiamine pyrophosphate	100-150 ng/ml	Reverse T3	< 20 ng/dL
Leaky gut	Cyrex Array 2 - Negative	TSH	< 2.0 microIU/ml
Leaky blood-brain barrier	Cyrex Array 20 - Negative	Free T3x100 : Rev T3 ratio	> 20
,		Toxin Related	
Tissue transglutaminase Gluten sensitivity antibodies - negative OR Cyrex Array3 and Cyrex Array 4 -	transglutaminase	Mercury	< 5 mcg/L
	Lead	< 2 mcg/dL	
Autoantibodies	Cyrex Array 5 - negative	Arsenic	< 7 mcg/L
Trophic Support		Cadmium	< 2.5 mcg/L
Vitamin D3	50-80 ng/ml	Copper: zinc ratio	0.8-1.2
Estradiol	50-250 pg/ml	C4a	< 2830 ng/ml
Progesterone	1-20 ng/ml		2000 118/1111

MS	Н	35-81 pg/ml
HLA	-DR/DQ	Benign
М	letals	
RBO	-magnesium	5.2-6.5 mg/dL
Сор	per	90-110 mcg/dL
Zino		90-110 mcg/dL
Sen	um Selenium	110-150 ng/ml
Pot	assium	4.5-5.5 mmol/L
Calo	cium	8.5-10.5 mg/dL
RINE T	ESTS	
Tric	hothecenes	Negative
Och	nratoxin A	Negative
Afla	itoxin	Negative /
Glic	otoxin derivative	Negative
OGNITI	VE PERFORMANCE	
	s vital signs, Brain HQ or livalent	> 50th percentile for age, improving with practice
MAGIN	G	
MR	I with volumetrics	Hippocampal, cortical volume percentiles steady (or increasing)

Sarcopenia Markers:

Myostatin, Myokine (Irisin), Plasma transthyretin (TTR), N-terminal procollagen peptides, Myostatin, Agrin fragment, GDF-15 - IGF-1 - Follistatin - Activin A – Myostatin, Ferritin, eHsp72, CRP, Cathespin D, Alarmin S100A8, Fragments of Aldolase A, IL-6, SPARC, MIF, C-reactive protein, Interleukin 6, Tumor Necrosis Factor-α

Osteoporosis Markers:

BTM (bone turnover marker), CTX (Cterminal telopeptide of type I collagen), NTX (N-terminal telopeptide of type I collagen), ICTP (Cterminal cross-linked telopeptide of type I collagen), PYD (pyridinoline), DPD (deoxy-pyridinoline), PINP (N-terminal propeptide of type 1 collagen), PICP (Cterminal propeptide of type 1 collagen), TRAF (Tartrate-resistant acid phosphatase), PTH (Parathyroid hormone), PLOD1 (Procollagenlysine,2-oxoglutarate 5-dioxygenase 1), ALPI (Alkaline phosphatase, intestinal), ALPL (Alkaline phosphatase, liver/bone/kidney), ALPP (Alkaline phosphatase, placental), ALPPL2 (Alkaline phosphatase, placental like 2)

Osteoarthritis (OA) Markers:

MMPs, CRPM, C3M, sCOMP, HA, PIIANP, Col2-3/4, uCTX-II, MMP-3, uCol2-1 NO2, sHA, sCTX-II, sMMP-3, sPIIINP

Senescence associated secretory phenotype (SASP) factors

p53, p21, p16, Bmi-1, GM-CSF, IL-1β, IL-6, IL-8, IL-10, IFNγ, CRAMP, EF-1α, 4-HNE, Malondialdehyde (MDA), 3- nitro-tyrosine (3-NT), TNF-α , NF-kappaB, C/EBP beta

Beyond senescent cells testing!

1. Flow cytometry immunophenotyping including senescent T-Cell detection:

Rationale: Senescent cell burden has been shown to strongly correlate with age-related orthopaedic conditions. Furthermore, targeting and eliminating senescent cells has been shown to mitigate age-related musculoskeletal decline. Thus, the ability to accurately detect senescent cells and their associated SASP factors will dramatically improve our understanding of individual patients response to treatment and potentially assist in deciding interventional strategies in the clinic.

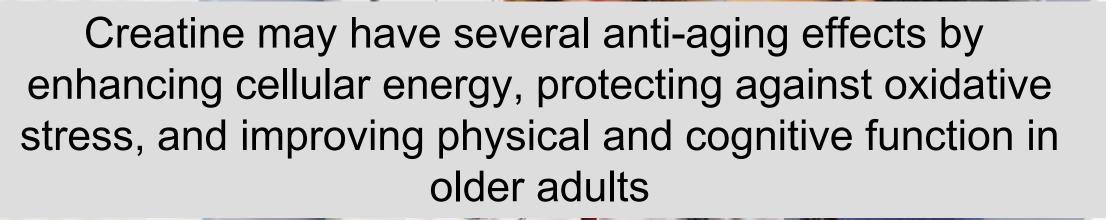
- 2. Luminex multiplexing or SASP profiling: Cell Senescence is a natural aspect of life. Understanding the various mechanisms that cause the progressive decline of cellular and tissue function may aid in developing therapies to delay or treat age-related conditions and diseases. Luminex technology is a multifunctional liquid phase analysis platform that can detect key targets of cell senescence signaling pathway. Advantages of cell senescence signaling pathway detection:
- 3. Telomere Length: Length of telomeres correlate with overall health and aging. They can be considered a measure of 'biological age.' When telomeres get too short and cells can no longer divide, they become 'senescent' and lead to a cascade of events that accelerate aging. Telomerase is an enzyme that repairs telomeres and maintains their length. Preliminary studies indicate that you can influence telomerase and telomere length with diet, lifestyle, and bioactive botanicals. There are several companies with different testing methods available. Example:

- **4.Full Genome Sequencing:** Companies like Veritas sequences the genetic material (https://www.veritasgenetics.com/myGenome). This is a tremendous amount of data, but as our knowledge grows and we better understand genetic drivers and we can always access this gene sequence information. Veritas provides reports and key genes of interest such as ApoE, NOS3, FOX03, MTHFR, COMT, DAO, PEMT. This test can be ordered with an alias for anyone who does not want their test results connected to them for medicolegal or insurance reasons.
- 5. Microbiome testing: Research on the microbiome is exploding. The microbes that live inside us impact every almost every aspect of health. This can be very valuable information, especially for people with otherwise medically unexplained symptoms. It's also an important part of optimal health. Presence or absence of certain strains of bacteria have been highly correlated with health outcomes AND can be modulated by diet, exercise, and supplement (pro-biotics and pre-biotics).

https://www.viome.com/ https://www.onegevity.com/products/gutbio

6. Oura Ring Apple Watch: This tracks a person's steps, calorie burn, heart rate and heart rate variability, details about sleep, meditation sessions, body temperature, and overall readiness. This vital information not only allows us to see how much a person is really sleeping, exercising, and meditating, but also how their body is responding to changes in diet and lifestyle. For example, cutting out alcohol and food intake for 3 hours before bedtime results in measurable improvements in sleep and heart rate variability metrics. (https://ourari.ng.com/how-o ura-wo rks/)

DO WE HAVE HEALTHY AGING DRUGS & SUPPLEMENTS FOR HEALTHY AGING? YES



Sport of the state of the state

de

Emerging research suggests that lithium have anti-aging effects by influencing key biological processes and offering neuroprotective benefits

Bioidentical hormone therapy (BHRT) as an anti-aging strategy because it uses hormones structurally identical to the body's own to potentially counteract age-related hormonal declines, reducing risks for age-related conditions such as osteoporosis and cognitive decline.

Lithium

Creatine

Talk to your doctor

Aging is Multi-Factorial

Geroscience

Hallmarks of Biological Aging

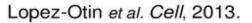
Genomic Instability

Telomere Attrition

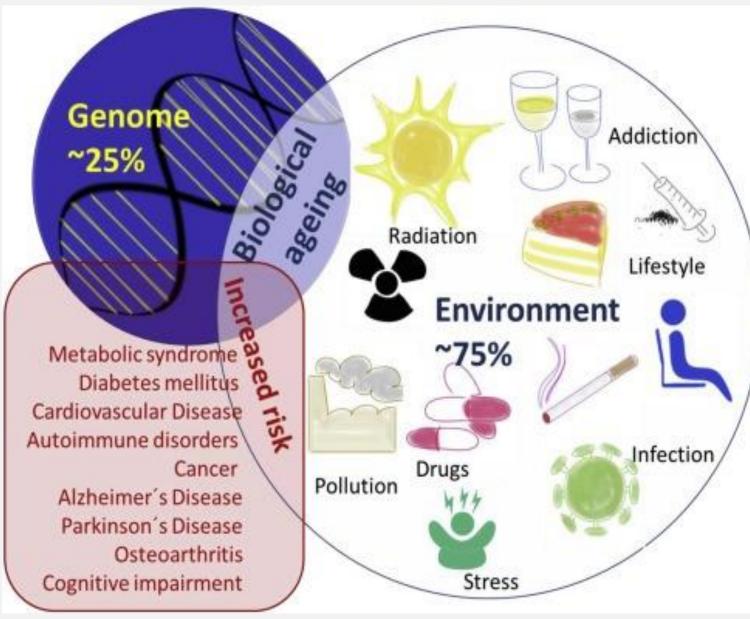
Epigenetic

Proteostasis

Nutrient Sensing

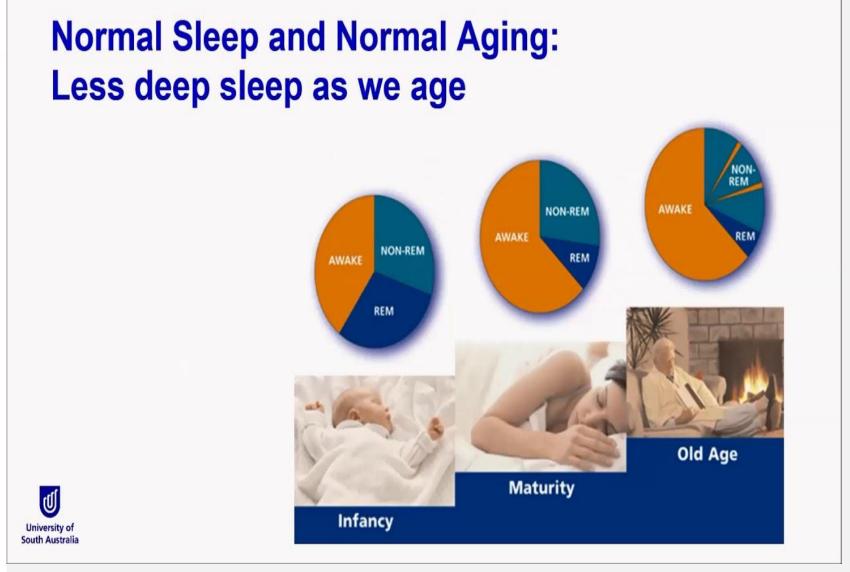

Mitochondrial

Cellular Senescence

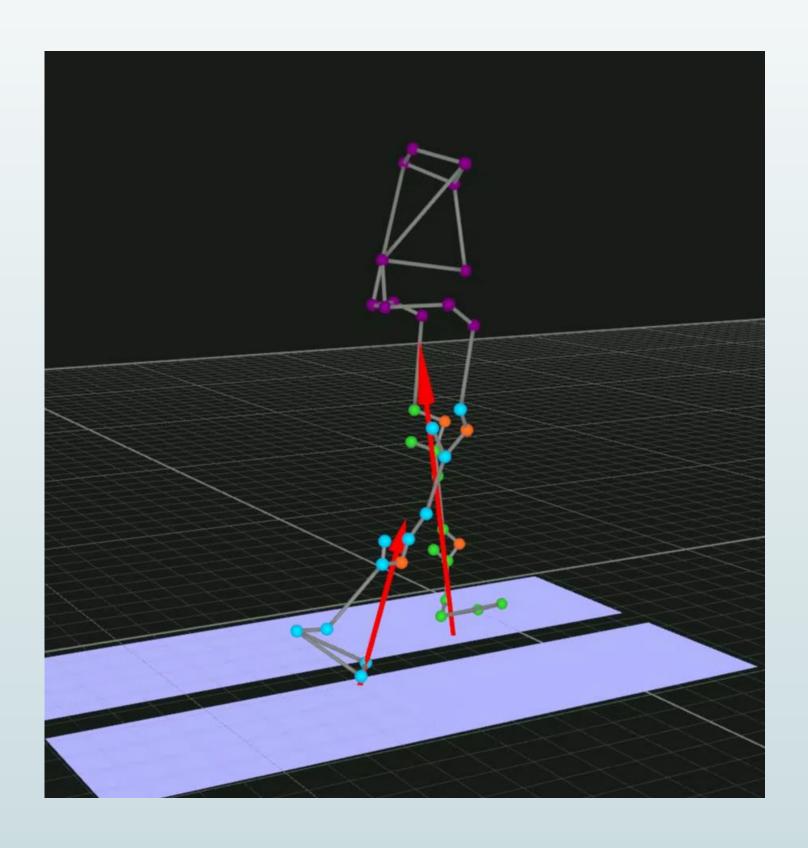

Stem Cell Exhaustion

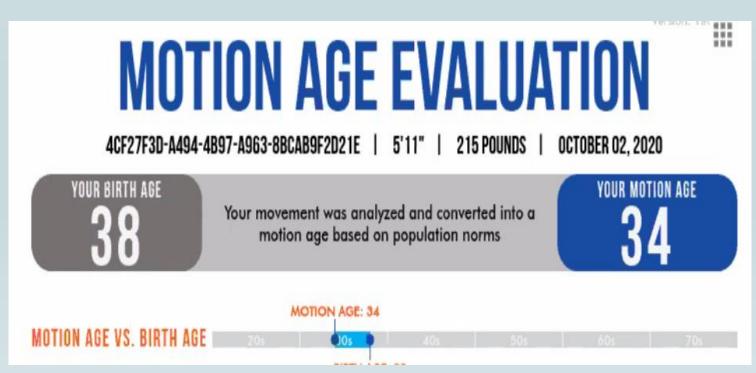
Cell Communication & Inflammation

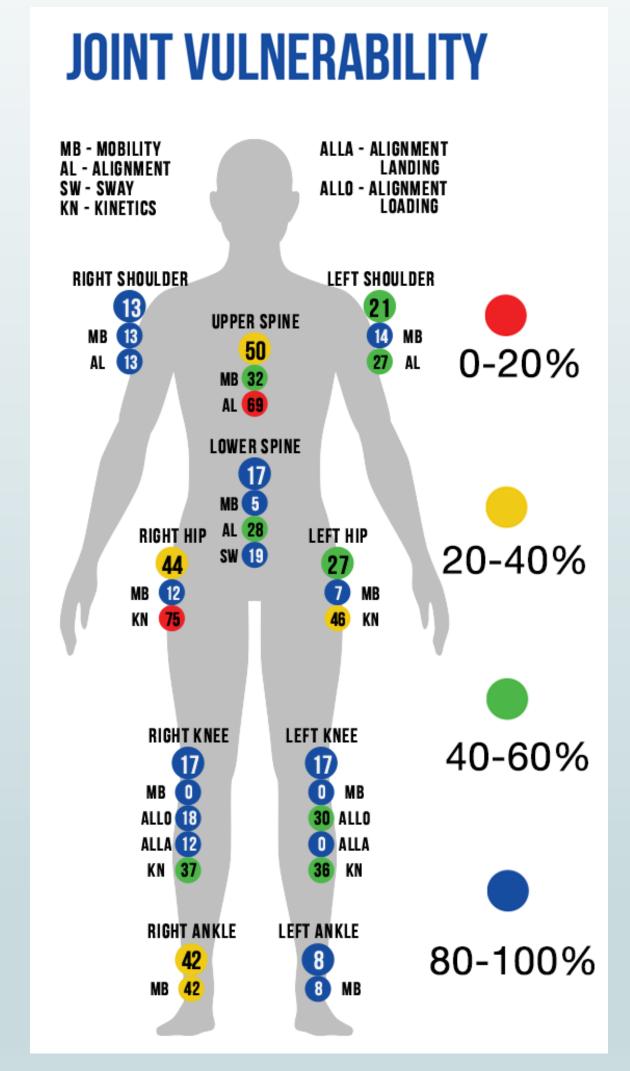
Intermittent FASTING


fasting window

eating window

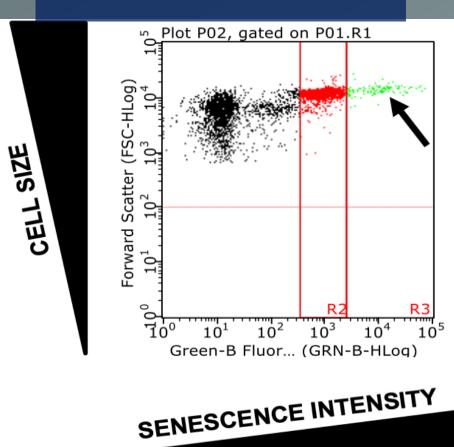


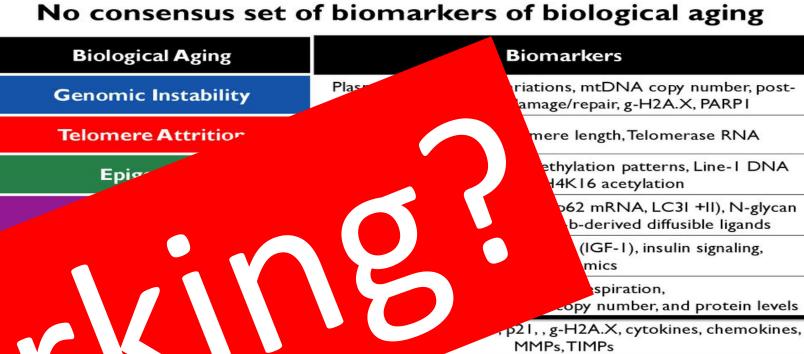



Beyond Senescent Cells Testing

Brain Health Assessment: This testing aims at a comprehensive 360-degree-approach to optimal brain health to know individual's brain's risk factors so that those factors can be addressed as soon as possible. This assay could identify what the patient should be taking for optimal physical and mental wellness and explore which types of exercise are best for the brain health. This test could help to plan for healthy meals that is nourishment to mind, body AND brain.

- NeuroQuant MRI scanning
- Estimated around \$50K per year
- PET scanning for amyloid: Detecting amyloid in brain is now possible. In those with typical late onset Alzheimer's, amyloid starts accumulating decades before symptoms occur. Early detection could be vital to early intervention.
- This test combined with the NeuroQuant MRI scan ability would be an incredible thing to offer people.





Healthy Aging Program moving toward a comprehensive concierge medicine

Senolytics Proteomics

Disease risk

Circulating Factors, e.g. IL-6, TNF-α, IL-1Ra, IL-1β, TGF-β, PAI

I, CCLII/eotaxin, VEGF, β2 microglobulin

composition, lineage (SLAM/CD50), self-renewal

Outcomes Prediction

Recommendations for Healthy Aging

GENERATIONS Biomechanics & Strength

HUMAC NORM

Working out every day for the last 40 plus years Play Golf, ski

Eat very healthy (3 meals per day)

Dinner-breakfast 12-14 hours (fasting)

Sleep well (Melatonin)

Very social life

Works 5 days per week (start at 8:30 am-5 pm)

85-year-old woman

Senescent cells result 1 percentile: 99% of people of

Fisetin

Flax Seed Oil (2)

Ginko-Combo

Glutathione (1,000mg)

Let's make the best pill cocktail

Night Lithiu

5-Met

MSM Omeg

Ostec

Querc

P-5-P

Your MD will make the final decision

Rapam,,

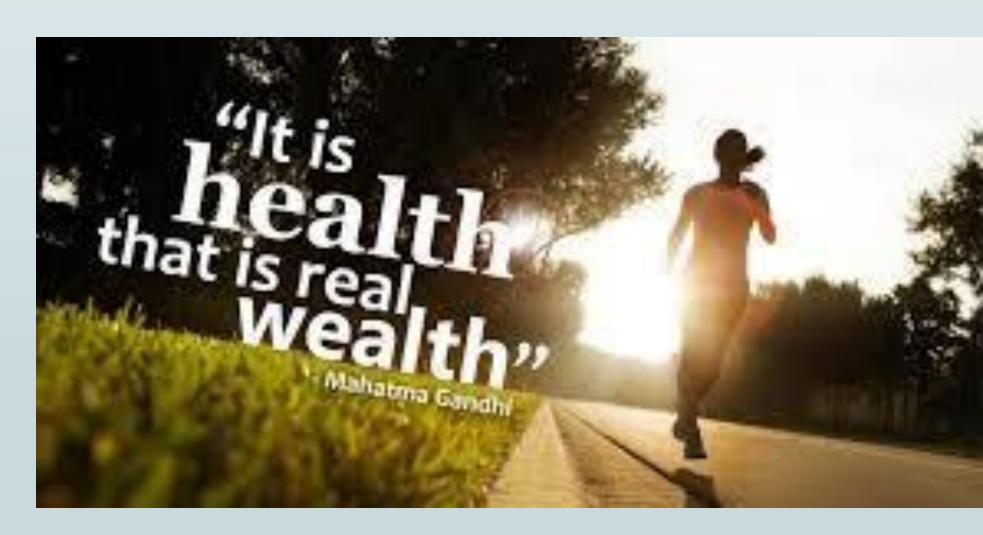
Resveratrol (1,000mg)

Taurine (1000mg 1-2xday)

Turmeric Curcumin w. Bioperine

1/2 Bioidentical Hormone (Estrogen 4mg /Progesterone100mg /Testosterone10mg)

1 Troche (0.125mg CJC 1295; 0.125 lpamorelin) *Collagen-producing peptides


Health is Better than Wealth

Wealth management and health management are distinct fields, with wealth management focusing on financial assets and health management on physical and mental well-being.

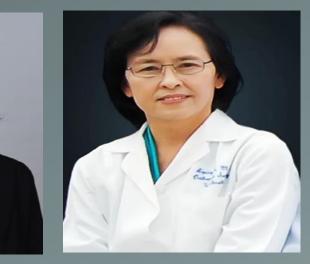
However, these two areas are **deeply interconnected**, as financial stability can significantly improve health outcomes by enabling better nutrition, healthcare and reduced stress; poor health can financially devastate an individual by increasing medical costs and reducing productivity.

Therefore, the goal for many is not a "versus" scenario but a holistic approach that integrates **both**—**financial health supports physical health and vice versa,** creating a cycle of wellness.

Key Takeaways

At SPRI, we are focused on aging research, and the goal is to delay aging-related diseases, including osteoarthritis, osteoporosis, neurodegeneration and cancer

Optimizing Patients for Surgery by using anti-inflammatory/fibrotic and mental health care will impact the clinical outcome of your patients


Dying Young As Late As Possible is achievable through a balanced nutrition, exercise, and drugs/supplement to delay the aging process

Skeletal Muscle Health is **paramount** for the aging process and Ozempic-like drugs should be used with caution, as their effects on skeletal muscle health may predispose individuals for accelerated aging

THANK YOU!!!

Ping Guo, PhD Xueqin Gao, MD. PhD

Naoki Nakayama, PhD Aiping Lu, MD

Scott Tashman, PhD

Joanna Roder, PhD

Colin Smith, PhD

Grant Dornan, MS Anna-Laura Nelson. PhD

Lee Jones

Kristin Morgan

Alex Brady, MS

Madi Blankenship, PhD

Kimi Kataoka, MD

Shintaro Mukohara,

Chloe Barton

Sara Robinson Keisuke Nakayama, MD, PhD

Steve Atherton

Charles Ho, PhD

Justin Hollenbeck

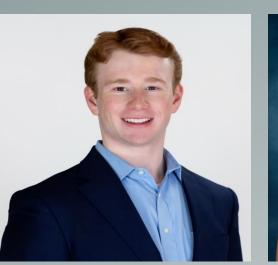
Tyler Perleberg

Taylor Calibo, MS

Marilee Horan, MPH Karen Briggs, MPH

Ashley Perrigaud

Alyson Speshock, MPH


Alexa Dietrich

Greta Gohring

DUQUESNE UNIVERSITY

Keegan Leach

Shivani Rao

Alex Alessi

Britney Force

Charles Huard

Buck

Live better longer.

SPRI Collaboration & Partnership

Medical School

Dr. Mikhail Kolonin

Dr. Vihang Narkar

Dr. Ramesh Papanna

Dr. Farshid Guilak



Dr. Charles Raison Chris Lindley MPH, MS, MBA

Dr. James Kirkland Dr. Chris Evans

Dr. Patricia Hardenbergh

Dr. Julie Barone

Dr. Sylvain Cardin

Dr. Eric Verdin

University of California San Francisco

Dr. Tamara Alliston Dr. Brian Feeley

Dr. William Murphy Dr. Mark Markel

Dr. Krishnendu Roy

Dr. Susan Bukata

UNIVERSITY OF MIAMI MILLER SCHOOL of MEDICINE

LINDA & MITCH HART CENTER FOR REGENERATIVE AND PERSONALIZED MEDICINE

Dr. Bing Wang

Dr. Francis Hornicek

Dr. Lee Kaplan

Dr. Thomas Best

Dr. Dimitrios Kouroupis

Dr. Anthony Griswold

Dr. Joshua Hare

Dr. Nicole Ehrhart

Dr. Lon Kendall

Dr. Jeremiah Easley

Dr. Kirk McGilvray

Dr. Ben Gadomski

Dr. Katie Sikes

Dr. Stuart Tobet Dr. Kelly Santangelo

Dr. Yadong Wang

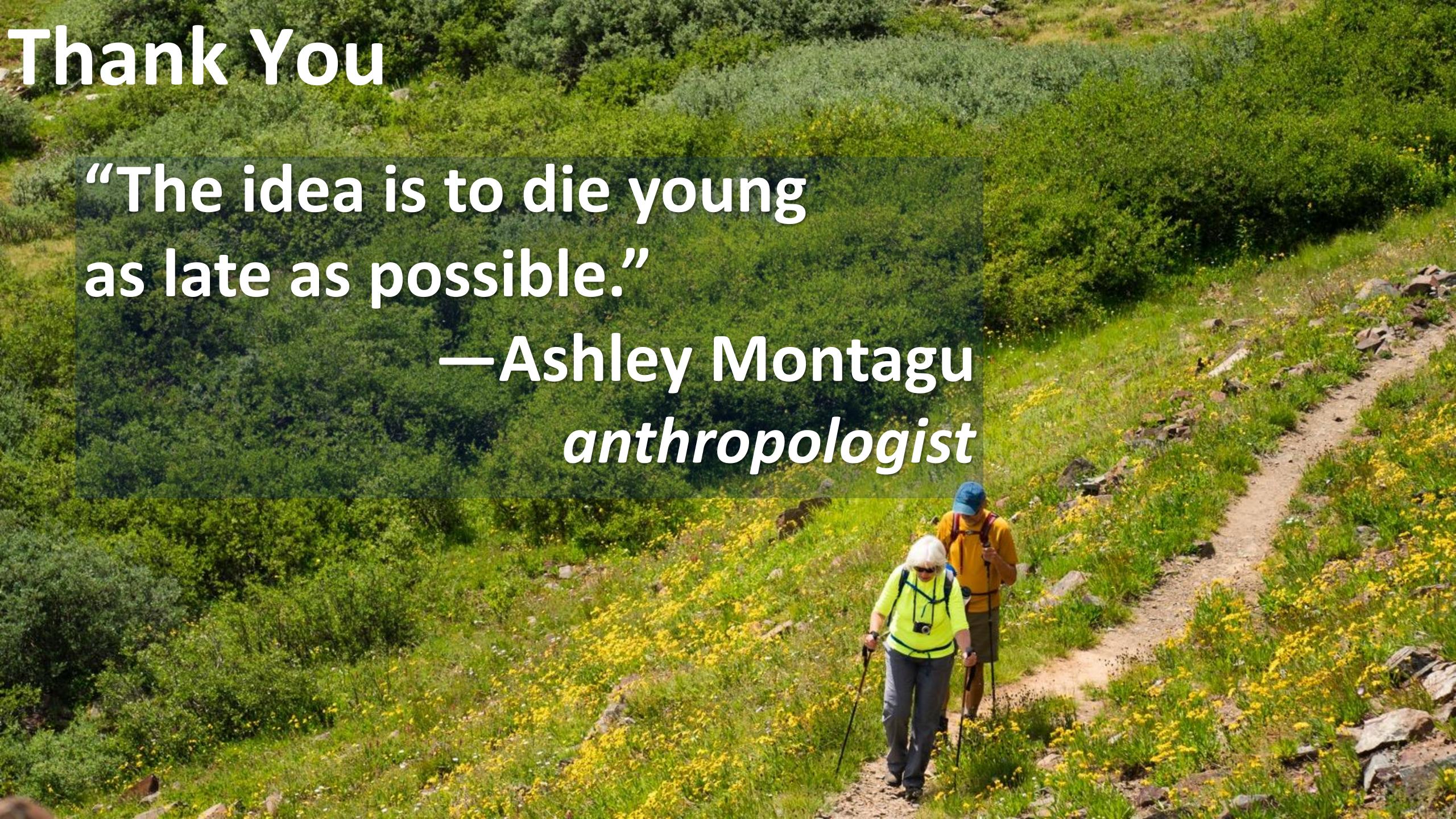
Drs. J. Kauffman Dr. Jenn Elliott,

Dr. Paul Robbins Dr. Laura Niedernhofer

2024 9th Annual Vail Scientific Summit

Scientists-Surgeons-Philanthropists-Hospital executive officials-family members-NIH-DOD-ORS-OREF executive officials

Dr. Lindsey Criswell director of NIAMS, NIH


VAIL SCIENTIFIC SUMMIT

WORLD-RENOWNED EXPERTS RETURN TO VAIL TO SHARE THE LATEST IN REGENERATIVE MEDICINE

Each August, scientists, physicians and researchers join Steadman Philippon Research Institute (SPRI) in Vail for the annual Vail Scientific Summit. Now in its ninth year, the summit has become an essential event for experts in regenerative medicine—scientists not only share their latest research, but also have the opportunity to collaborate and meet with other scientists in the field.

